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ABSTRACT

Light Detection and Ranging (LiDAR) is a data acquisition method that uses time-of-

flight calculations on laser pulses to obtain 3D point samples of an environment. These

data sets contain information about a scene that is impossible to obtain with standard

optical imaging, such as the absolute scale of objects, the position of heavily occluded

objects, and surface texture information. In this thesis we investigate several interest-

ing uses of such data sets.

First, we propose a strategy for confirming the proposed positions of objects in

a scene, independent of a specific detection or registration method. A dual metric,

consistency and confidence, is computed to produce a human-interpretable metric of

the certainty that an object has been correctly identified. We show that the proposed

method works well for scenes containing partially visible or heavily occluded objects.

Next, we propose a technique to interactively segment objects from the back-

ground in LiDAR scans. First, we create a conservative segmentation of the object

based on user strokes and LiDAR depths, where they are reliable. Second, this segmen-

tation is refined using a traditional graph-cut method based on colors and depths. The

resulting segmentations are sharp and cannot be easily achieved with either color-only

or depth-only algorithms.

Third, we study how to fill large holes in LiDAR data, typically due to occlusions

caused by diverging lines of sight. Our approach generalizes exemplar-based image

inpainting and uses both the color and depth information present in a LiDAR scan.

A novel gradient-domain algorithm forms the core of the approach. We show that by

combining an inpainting algorithm with the proposed algorithm we can quickly and

convincingly remove unwanted objects from LiDAR scans and render the scene from

different perspectives.

We also discuss the future work to be completed post-candidacy, which addresses

several small but important problems in patch-based image inpainting. The focus of

these contributions is preventing incorrect patches from being used by the inpainting

algorithm. We extend an existing patch-based inpainting technique to consider the

xiv



cost of filling multiple candidate patches at each iteration, leading to a procedure that

performs better than traditional greedy algorithms.
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CHAPTER 1

Introduction

The world around us is very complex. Until recently, the most common method to

capture and analyze this world was photography. Specifically, digital photography has

become pervasive over the last twenty years, allowing us to take high detail snapshots

of the world and begin processing them almost instantaneously. Storing, manipulat-

ing, and examining these photographs has become a critical task in a wide range of

fields, from art and architecture to archeology to robotics.

Although 2D images contain an enormous amount of useful information, they

suffer from a major drawback. By the nature of the acquisition process, there is an am-

biguity inherent to each pixel captured in the image — namely, any scene point on a

ray in 3D space projects to the same pixel location in the image plane. We explain this

problem in detail in Section 2.1.1. To overcome this ambiguity, researchers have inves-

tigated several ways of directly acquiring information about the 3D scene (detailed in

Section 2.1).

The technique we are concerned with throughout this thesis is Light Detection

and Ranging, or LiDAR. LiDAR is a data acquisition method which uses time-of-flight

calculations of laser pulses to obtain measurements of a 3D scene. The resulting data

sets contain information about a scene that is impossible to obtain with standard op-

tical imaging, such as the absolute scale and measurements of objects, the position of

heavily occluded objects, and surface texture information. A sketch of the LiDAR data

acquisition process is shown in Figure 1.1.

1
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LiDAR

(a)

LiDAR

(b)

Figure 1.1: A sketch of the LiDAR acquisition process. (a) A single point acquired by

the LiDAR scanner by pulsing a laser and measuring the time it takes to reflect off

the scene and return to the scanner. (b) By measuring several such pulses, an image

of the scene is acquired.

Using a time-of-flight calculation, the distance to the first reflecting surface in

the scene in the direction of the pulse can be determined. Thousands of such laser

pulses are emitted in a grid, forming an image of the scene. We refer to this as a “2.5-

D” image; the full 3D structure is not known since the laser pulses cannot penetrate

opaque objects to see their reverse side. In conjunction with this laser pulse measure-

ment, modern LiDAR scanners typically include a co-located camera that can be used

to assign an RGB color to each detected 3D point.

The size and resolution of data acquired by this method can be incredible. For

example, in Figure 1.2 we show a LiDAR scan of a building with 1.6 million points.
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Figure 1.2: A LiDAR scan of a building. This scan contains 1.6 million colored points.

Visual effects artists in Hollywood as well as other consumer media sources have

recently become very interested in 3D data acquisition techniques for scanning built

sets, props, and actors’ bodies and faces. In fact, an entire book [127] has been pub-

lished about how to manipulate this type of data in a way that is useful for this type

of user. The band Radiohead brought this type of data into view of the general public

in their music video “House of Cards”. This video featured video-rate LiDAR scans of

the musicians performing, and 3D flythroughs of a suburban environment. A frame

from the video is shown in Figure 1.3a. Modern artists also use LiDAR directly in their

work. During this thesis, we worked with artist Sophie Kahn to obtain scans which

were post-processed into art pieces. One such piece is shown in Figure 1.3b.
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(a) (b)

Figure 1.3: Non-technical uses of LiDAR. (a) A frame form Radiohead’s music video

“House of Cards”. (b) a piece of art made from a LiDAR scan.

While LiDAR has enabled interesting effects in the arts, it has become even more

important to technical fields that rely on very accurate data to make mission critical

and potentially life-saving decisions. Modern robotics relies heavily on 3D data for

navigation, object detection, and decision making. Civil engineers use 3D data to con-

struct and analyze very accurate models of the terrain on their build sites, as well as

their prospective buildings. Architects can digitize 3D sculptures and mock-ups and

insert them into CAD-type programs to see how they will look and feel. Archaeologists

use LiDAR as a tool for preservation and analysis of historical sites and artifacts. Li-

DAR data allows for analysis of the tool marks produced by sculptors, as well as the use

of computer algorithms to reassemble the pieces of broken artifacts (ceramic pottery,

etc.) like a jigsaw puzzle. A popular example of this type of work is the Digital Michae-

langelo project [105], in which researchers performed extremely high resolution scans

of the Statue of David for historical preservation and analysis.

LiDAR data has also become extremely important to the military. It is used for

mission planning, reconnaissance and intelligence gathering, as well as for creating

extremely accurate simulations of battlefield phenomena such as helmet deformation

and vehicle armor performance. Additionally, a non-obvious military use of LiDAR is

to study the composition of clouds. This allows the creation of highly accurate local

weather models and forecasts, which can be used to precisely time covert missions.

The type of data we are interested in throughout this thesis is referred to as “ter-
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restrial LiDAR”, meaning that it was acquired from a scanner on the ground. However,

a second technique of performing LiDAR scans is to attach the scanner to a plane or

drone and fly over regions to produce 3D models of terrain and buildings. These scans

can be used for many purposes, such as topographic studies, urban planning, or mili-

tary mission planning. A typical aerial scan is shown in Figure 1.4.

(a) (b)

Figure 1.4: Aerial LiDAR scanning. (a) An aerial image of a suburban environment.

(b) An aerial LiDAR scan corresponding to the region shown in (a) (images from [71])

1.1 Contributions

In this thesis we study the analysis, interpretation, manipulation, and synthesis

of 3D data acquired from LiDAR scanners. The work is motivated by a larger, encom-

passing problem of “3D Image Editing” — that is, a “Photoshop”-like tool for working

with LiDAR scans. We are primarily interested in two main types of editing: first, the

detection and segmentation of 3D objects in a complex environment, and second, the

realistic filling-in of holes caused by removed objects. The same technique used to

fill holes left by removed objects can also be used to fill LiDAR shadows (discussed in

detail in Section 2.1.4.4), making the LiDAR data much more visually appealing and

useful to a user. The work in this thesis is divided into several chapters, as described

below:
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• In Chapter 2, Related Work, we discuss previous work on the problems that we

address in this thesis. This chapter provides an overview of the literature related

to all of the following chapters. The technical details of the prior work that is di-

rectly applied and extended in this thesis are briefly discussed, but an in-depth

explanation is deferred to the beginning of each chapter in which they are rele-

vant. This allows us to provide the necessary background information and ter-

minology immediately before it is needed.

• In Chapter 3, Custom LiDAR Tools, we outline some supporting work in the form

of new software tools designed to complete the work in this thesis. The most

important of these tools are a synthetic LiDAR scanner and a technique to re-

color LiDAR scans using externally acquired images from a digital camera. The

synthetic LiDAR scanner allows us to acquire realistic LiDAR data sets from arti-

ficial 3D object models. This enables us to fully control the situation so that we

can accurately study the effects of different phenomena in LiDAR data. Our scan

recoloring procedure uses computer vision techniques based on resectioning to

align a digital image with a 3D scan. This is necessary as a preprocessing step in

every part of this thesis, as it drastically improves the quality and alignment of

the color portion of the data.
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(a)

LiDAR

(b)

Figure 1.5: A visual summary of the work in Chapter 3. (a) A synthetic LiDAR scan-

ner. (b) Recoloring a LiDAR scan using an external image.

• In Chapter 4, Consistency and Confidence: A Dual Metric for Verifying 3D Object

Detections in Multiple LiDAR Scans, we propose a registration method-independent

strategy for confirming the proposed positions of objects in a scene. A dual met-

ric, consistency and confidence, is computed to produce a human-interpretable

metric of the certainty that an object has been correctly identified. The con-

sistency measure uses a free space model along each scanner ray to determine

whether the observations are consistent with the hypothesized model location.

The confidence measure collects information from the model vertices to deter-

mine how much of the model was visible. The metrics do not require training

data and are more easily interpretable to a user than typical registration objec-

tive function values. We demonstrate the behavior of the dual measures in both

synthetic and real world examples.
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(a) (b)

Figure 1.6: A visual summary of the work in Chapter 4. Our new metrics allow a user

to be certain of a correct object detection (a) and identify incorrect detections such

as (b).

• In Chapter 5, LiDAR Segmentation, we propose a two step technique to interac-

tively segment entire objects from the background in LiDAR scans. We treat the

LiDAR scan as a 4-channel image — the associated 3-channel RGB image, with

the depth image channel appended. This allows us to treat the problem with ex-

isting image graph-cut segmentation techniques. Using a graphical interface, a

user can mark as few as two strokes in the image, one on the object of interest and

one on the background, and separate an entire object from the background. The

interface also allows the user to interactively refine the resulting segmentation if

necessary. We present an algorithm which takes advantage of the best qualities of

depth image segmentation while combining them with the best qualities of color

image segmentation to obtain an accurate full-object segmentation very easily.

Our main observation is that segmenting the depth image alone can provide an

excellent segmentation in some regions of the object, but has trouble in other

regions. Our goal is to use these clean depth segmentations in the well-behaved

regions of the object, and then refine the segmentations using color where we

are less confident. We propose a two step algorithm. First, a conservative es-

timation of the object is computed using the depth image alone, resulting in a

strict under-segmentation. We then use this result as the initialization to a color
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image segmentation step that refines the segmentation in the ambiguous areas

while preserving the sharp object boundary obtained by the depth segmenta-

tion. The result of the two step segmentation is an accurately segmented object

without the need for training data. We demonstrate this technique in several

real-world data sets.

(a) (b) (c)

Figure 1.7: A visual summary of the work in Chapter 5 (a) User provided strokes

on the foreground (object) and background. (b) The 3D scene. (c) The segmented

object.

• In Chapter 6, LiDAR Inpainting, we study the problem of filling a large hole in

LiDAR data. These holes occur in two main cases. First, using a technique such

as the one we proposed in Chapter 5, an object can be selected and removed

from a scene. Second, since the LiDAR laser cannot penetrate opaque objects,

a phenomenon referred to as a “LiDAR shadow” appears behind every object

in the scene. These shadow holes are present in nearly every real-world scan.

We present an algorithm to synthesize, or hallucinate, data in these types of

holes that looks like a plausible representation of what could have been present

in the scene. The major benefit of filling this type of hole is to make a scan

viewable from a position other than the original acquisition viewpoint, which

is critical for data exploration. Our algorithm combines and extends existing

gradient-domain image editing techniques and greedy patch-based inpainting

techniques. We copy depth gradient patches intelligently from elsewhere in the

image into the hole and then reconstruct the scene structure by solving a vari-

ational problem resulting in a Poisson equation. We present several real-world

examples of this technique with excellent results.



10

(a) (b)

Figure 1.8: A visual summary of the work in Chapter 6. (a) A LiDAR scan with a large

LiDAR shadow. (a) The inpainted LiDAR scan using our algorithm.

• In Chapter 7, Post-Candidacy Work, we discuss the work to be completed post-

candidacy. First, we introduce an additional step in the patch-based inpainting

algorithm which we refer to as a “patch acceptance test.” The concept is very

similar to our work in Chapter 4, as it provides a search-technique independent

way of determining if the proposed “best patch” is actually a good patch to copy

at every location. We have observed that highly discriminative operations are far

too computationally intensive to perform at every candidate source patch dur-

ing the patch-search stage of the algorithm. Instead, we search for a small set of

candidate patches using a simple and fast sum of squared differences method,

and then perform intensive computations on each of these candidates to deter-

mine if it should be accepted or not. The user is prompted to take an action such

as selecting a different patch from a list of top candidates, or manually selecting

a better patch from the image. Second, using this idea of acceptance tests, we

make the inpainting algorithm less greedy by searching for matches to multiple

candidate target patches simultaneously. We will show that while only a few bad

patch matches may be used in each inpainting problem, by eliminating these

errors the results can be greatly improved.
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(a)
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(b)

Figure 1.9: A visual summary of the work in Chapter 7. (a) An analysis of erroneously

good patch matches. (b) An improvement to patch-based inpainting that considers

multiple target patches simultaneously.

1.1.1 Publications

To date, the material in Chapter 4 has been published in the Proceedings of the

International Workshop on 3-D Digital Imaging and Modeling (3DIM) 2009 , held

in conjunction with the International Conference on Computer Vision (ICCV)

[62]. The material in Chapters 5 and 6 is in preparation for ACM Transactions on

Graphics with a submission goal of May. An abbreviated version of the material

in Chapter 6 has been submitted to the International Workshop on Point Cloud

Processing 2012, a workshop in conjunction with Computer Vision and Pattern

Recognition (CVPR). The material in Chapter 3 has been summarized in several

technical reports in online journals and magazines, including the Insight Journal

[46, 60, 56, 57, 55, 58], Visualization Toolkit (VTK) Journal [45, 51, 50, 52, 61, 53,

47, 49, 48, 59, 54] , and Kitware Source Magazine [42, 44, 43].



CHAPTER 2

Related Work

In this chapter, we discuss prior work in the areas that we extend in this thesis. This

chapter is broken into sections corresponding to the following chapters in this docu-

ment.

2.1 3D Data Acquisition

In this section, we describe several techniques for obtaining 3D information from

a scene, or a 3D environment in which we live. We start by explaining why traditional

digital images are not sufficient for 3D data acquisition and analysis. We then describe

several techniques for both indirectly and directly estimating and measuring 3D scene

points.

2.1.1 Optical Image Acquisition

While images contain an enormous amount of information, they suffer from a

major drawback. By the nature of the acquisition process, there is an ambiguity inher-

ent to each pixel captured in the image. Namely, we cannot be sure which 3D point in

the scene generated each pixel in the image. In fact, there is an infinity of points (a ray)

which could have produced every image pixel. In Figure 2.1, we show two 3D points, P ′

and P ′′ which both are geometrically consistent with the observed pixel p in the image.

2.1.2 Passive 3D Data Acquisition - Reconstruction from Images

In many cases, stereo vision algorithms can be used to estimate 3D information

about an environment. With two images of the same scene, we can estimate 3D struc-

ture in the scene. The heart of the problem is finding correspondences in the two im-

ages. That is, for a pixel in the first image, we must determine which pixel in the sec-

ond image was produced by the same 3D point. If these correspondences can be es-

tablished, reconstructing the 3D scene is a straightforward mathematical procedure.

However, identifying these correspondences unambiguously can be challenging. The

12
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p
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(a)
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Image Plane
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(b)

Figure 2.1: The problem with obtaining 3D information from a single image. (a)
A 3D scene consisting of a tree. The 3D points P ′ and P ′′ could have produced the
image point p. (b) A 3D scene consisting of a larger tree, farther from the camera
than in (a). The 3D points P ′′ could also have produced the same image point p.

fundamental problem is locating and matching small patches of pixels in the two im-

ages which can be difficult in low texture areas (we discuss this problem in depth in

Chapters 6 and 7). There are some constraints induced by the camera configuration

(the epipolar geometry), but the problem is still prone to error.

An extension of the stereo vision problem, multi-view stereo, relies on multiple

(tens to hundreds of) cameras capturing the same instant of a scene from varying view-

points. An equivalent effect can be achieved by using only one camera and moving it

relative to a static scene (a video sequence). Large sets of images of the scene taken

from significantly varying viewpoints must be available for the process to work well.

A survey of multi-view stereo techniques is presented in [137]. Excellent results have
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been obtained with an algorithm called Patch-based Multi-View Stereo (PMVS) [77], as

shown in Figure 2.2.

(a) (b)

Figure 2.2: A 3D reconstruction of a solider using the PMVS algorithm. (a) An im-
age of a statue of a solider. (b) A 3D reconstruction of the soldier from 48 images.
(Images from [77])

In recent work [4, 3], Agarwal et al. demonstrated the state of the art of these

techniques by attempting to reconstruct the city of Rome from a massive collection of

tourist photographs. Thousands of images were used to create the reconstruction of

Trevi fountain, shown in Figure 2.3.
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Figure 2.3: A 3D reconstruction of Trevi fountain from thousands of images. The

locations of the cameras are shown as black pyramids. (Image from [4])

While the 3D information reconstructed via these techniques can look good in

many cases, the accuracy of the reconstructed scenes are not as good as those obtained

directly by active 3D acquisition methods (discussed in Section 2.1.3). These methods

suffice when the data needs to be gathered quickly and the data sets produced will

be used for aesthetic purposes, but when the accuracy of the scans is critical, active

techniques are highly desirable. In this thesis, we are interested in algorithms working

on large-scale, highly accurate 3D information which is difficult to obtain with passive

methods.

2.1.3 Active 3D Information Acquisition

2.1.3.1 Structured Light Scanning

Structured light scanning is the process of projecting known patterns of light into

a scene, taking images of the resulting overlap of the patterns with the objects in the

scene, and then computing the underlying 3D geometry from these images. Typically
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several different sequences of bars are projected into the scene sequentially, as shown

in Figure 2.4.

(a) (b)

(c) (d)

Figure 2.4: A scene with multiple light patterns projected on a statue in a temporal
sequence. (Images from [129])

The way that the pattern deforms when projected onto objects in the scene can

be interpreted to compute the depth of points in the scene. These patterns can also

be projected using infrared wavelengths, so that they are not visually distracting to a

human observer of the scene. The major drawback of this acquisition method is that

the size of the scene that these patterns can be projected onto is typically quite small

(< 10m). However, the results can be quite good, as shown in Figure 2.5.

This technology has recently been brought to the public eye by Microsoft, as a

similar concept drives their Kinect system. Amazingly, the Kinect sells for only $100,

allowing this technology to rapidly develop new and interesting uses by the public.

2.1.3.2 Time-of-Flight (TOF) Cameras

A time-of-flight camera is a device which projects infrared light into a scene and

computes a depth measurement at each pixel in a sensor array simultaneously. These
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Figure 2.5: The resulting mesh after scanning a sculpture of a head with a structured
light system. (Image from [129])

devices are often inexpensive, but their low range, low resolution (usually < 200×200

pixels), and low accuracy are limiting factors in their usefulness for large scale 3D data

acquisition. However, the devices have some very appealing properties such as their

small physical size (the Mesa Swiss Ranger 4000 shown in Figure 2.6 is only about 3

inches cubed) and their ability to capture 3D data at video frame rates.

For detailed information on time-of-flight acquisition, we refer the reader to [100,

38].

2.1.3.3 Light Detection and Ranging (LiDAR)

Light Detection and Ranging (LiDAR) is a data acquisition method which com-

putes the distance to 3D points by measuring reflected laser light projected into the

scene. Two technologies are popular in commercial systems. The first uses time-of-

flight calculations on laser pulses to obtain the 3D point samples. The system pulses

the laser, waits for it to return to the sensor after reflecting off of the scene, and com-
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(a)

(b)

Figure 2.6: (a) A Mesa SR4000 Time-of-flight camera. (b) A scan of an office cubicle
produced by the SR4000. We note that it is low resolution, and quite noisy in many
areas.

putes the distance to the reflection point by dividing the time the pulse took to return

to the scanner by 2c (where c is the speed of light, and 2c because the time measured

was a round trip from the scanner to the point.) The second technology uses a sinu-
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soidally modulated continuous wave. It computes the phase difference between the

generated wave and the reflected wave to determine the distance to the 3D point in

the scene. In both cases, a LiDAR scanner performs thousands of such measurements,

creating a “2.5-D” image of a scene. We do not refer to these scans as “full 3D” because

the LiDAR laser cannot penetrate opaque objects to see their reverse side. Data sets

obtained using these methods contain accurate 3D information about a scene that is

impossible to obtain with standard optical imaging, such as the absolute scale of ob-

jects, the position of heavily occluded objects, and texture information.

In this thesis we are concerned with scanning LiDAR scanners. This type of scan-

ner works by moving internal motors and mirrors to direct the laser into the scene.

A mirror sweeps the laser pulses (by varying its angle) across the scene acquiring a

“strip” of points, then the mirror is turned slightly and then swept across the scene

again, acquiring an adjacent strip of points. This process is continued until the scan

is complete. This type of scanner is highly accurate (the Leica HDS3000, for example,

has 6 mm accuracy at 50 meters). They typically also have a very long range (100+ me-

ters). Some scanners have multiple (up to 64) sensors in a linear array, and this array

is physically rotated around the device. This method allows the scene to be captured

much faster. For example, the Velodyne HDL-64E scanner can scan at up to a 15 Hz

frame rate, which results in acquiring over 1.3 million points per second. This type of

scanner is often mounted on autonomous vehicles, such as DARPA Grand Challenge

vehicles, as shown in Figure 2.7.

The LiDAR scanner that we used to acquire the data sets seen throughout this

thesis is the Leica HDS3000 scanning LiDAR scanner, shown in Figure 2.8.

A very useful property of LiDAR scanners is their ability to “see through” foliage.

As shown in Figure 2.9, since each laser pulse travels on an independent path through

the scene, some of the pulses will hit a tree, while others will find small gaps between

the leaves and hit the objects behind the tree. Although the points behind the tree are

sparse, they can still be used to detect objects. This is in contrast to an image of the

scene, which would likely not show any detectable traces of the existence of the object.
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Figure 2.7: The winning vehicle of the DARPA Grand Challenge. Five LiDAR scanners
are mounted across the top of the vehicle.

Figure 2.8: The Leica HDS3000 LiDAR scanner, used to acquire all of the data sets in
this thesis.

2.1.3.4 Spherical Grid Acquisition

In this thesis, the LiDAR scanner used scans the scene in a spherical grid. That is,

the motors in the scanner aim the laser through imaginary, uniformly spaced cells on

a sphere to capture the 3D points. The sampling in the θ (azimuth) and φ (elevation)
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LiDAR

Figure 2.9: A demonstration of the foliage penetration capability of LiDAR. The blue
dots show points that were acquired from the occluding object, while the red dots
show points which reached the object of interest. A photograph from this same view-
point may not have shown any, or extremely limited, traces of the car.

directions need not be equal. This process is shown in Figure 2.10.

Figure 2.10: A sketch of the spherical grid acquisition process of many LiDAR scan-
ners. (image from [127])

It is because of this grid that we can alternatively view the points as a “depth

image.” A depth image is displayed as a flat grid of pixels, the values of which are the

distance from the scanner to the corresponding point. These pixels are float-valued,

so to display them they must be pseudo-colored, as shown in Figure 2.11.
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Figure 2.11: A depth image of a man sitting on a stool. Dark blue points are closest
to the scanner, while dark red points are farthest from the scanner.

2.1.4 Problems with LiDAR

While LiDAR has many positive qualities, it is not perfect. This section details

some of the problems that can arise in LiDAR data.

2.1.4.1 Bulkiness

While scanners are often vehicle mounted, many are tripod mounted. All of the

data in this thesis was acquired using the Leica HDS3000 scanner. This scanner re-

quires a car-battery sized power source, a surveyor’s tripod, and a laptop to operate.

Moving this bulky setup into position can be laborious and time consuming. A typical

setup is shown in Figure 2.12.

2.1.4.2 Point Density Variability and the Glancing Angle Problem

As the distance to the surfaces in the scene is unknown a-priori, the resulting

points acquired in a uniform spherical grid do not uniformly sample the scene sur-

faces. Even points that are on a surface perpendicular to the scanner will have different

depths, as shown in Figure 2.13.
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Figure 2.12: The setup of a typical scanning session with the Leica HDS3000.

LiDAR

d

d + ε

d + ε + ...

d + ε

d + ε + ...

Figure 2.13: The variable point spacing of a LiDAR scan.

Additionally, not all surfaces are sampled equally densely, especially those at an

oblique angle relative to the scanner. This phenomenon is shown in Figure 2.14.
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(a) (b)

Figure 2.14: The glancing angle problem. (a) A scan of a mailbox and a building.

(b) We see that the flat surface at the base of the mailbox was seen by a very small

number of LiDAR rays compared to other surfaces in the scene.

2.1.4.3 Thin Objects

An optical camera accumulates the contribution from many points in the world

to produce each pixel. On the other hand, a LiDAR pulse approximates seeing a single

point in the scene. Because of this, thin structures can be missed entirely. A common

and important example of this problem is missing power lines in a scene. In Figure

2.15, we show a scene in which data interpolation has been applied to detect and fill in

these missing power lines.

Figure 2.15: Interpolated power lines.
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2.1.4.4 LiDAR Shadows

The problem of LiDAR shadows is of particular note, as it is the focus of our con-

tribution in Chapter 6. When a LiDAR scan is taken of an opaque object in front of

a background, the laser cannot go through the object, so the scene behind the object

is not observed. When the scan is viewed from a viewpoint other than the one from

which it was acquired, it leaves a hole, or shadow, in the scene as shown in Figure 2.16.

(a)

missing points behind object

LiDAR

(b)

Figure 2.16: The shadow left behind an object in a LiDAR scan. (a) A real example

of a LiDAR shadow in a LiDAR scan. (b) A sketch of the situation which causes the

shadow to occur. Here we show a scan of a car with a wall in the background. We see

that there are no red dots (LiDAR returns) behind the car, as the laser reflected off of

the car before reaching the wall.

If this missing data is required to be known, there is no other choice than to ob-

serve and record the scene from a different viewpoint. Even if this area is not of partic-

ular interest, it is still distracting to see large holes in the scene when inspecting other

regions.
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2.1.4.5 Invisible Surfaces/Missing Returns

Due to their surface properties, some objects are poor candidates for scanning

with LiDAR. These objects include glass (often found in urban scans in the form of

car and building windows), black surfaces (again, many vehicles have this property),

and other reflective surfaces (metal signs, etc). The laser never returns to the scanner

because it reflects most of its energy in a different direction, so the data cannot be

recorded.

For example, when scanning vehicles, the painted surfaces are very reflective so

there are many missing returns, and the windows are entirely invisible, as shown in

Figure 2.17.

Figure 2.17: Missing points in the glass windows and metal wheels of a car. When the
LiDAR laser encounters these reflective surfaces, its energy is reflected away from
the scanner, rather than returning to the scanner in the case of non-reflective ob-
jects.

In this section we have outlined several methods of data acquisition. In the re-

mainder of this chapter, we review techniques and algorithms for analyzing this type

of data set.
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2.2 Registration

Registering, or aligning, two or more objects is a common problem across a vari-

ety of fields. While registration is common in image processing, we restrict the discus-

sion in this section to techniques that apply to 3D data. The problem can be described

finding the best transformation to align one object with another. By objects in this dis-

cussion, we mean 3D meshes or point clouds.

One use of registering point clouds is to combine multiple data sets into a more

complete representation of a scene. For example, if two point clouds of the same scene

are acquired from different view points, they will both be partially incomplete. By

aligning the point clouds, the available data in one cloud can “fill in” the missing parts

of other cloud. An example of this is shown in Figure 2.18.

(a) (b)

Figure 2.18: Point cloud registration. (a) Several partial point clouds of a lion statue
acquired from different perspectives. (b) The resulting registration of all of the point
clouds. The resulting combined point cloud is a much more complete description of
the statue. (images from [114])

There is an extensive body of work on 3D object registration. A very popular

technique to register point clouds is Iterative Closest Points (ICP) [17, 164]. ICP is a

two step iterative procedure. First, given an initial 3D rigid transformation between

point sets A and B , for each point in A, we find its closest point in B . In Equation 2.1

we state mathematically the condition to find this closest point to the i th point in A.
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bi = ar g min
∀p∈B

d(ai , p) (2.1)

This distance function d(ai ,bi ) is often taken to be the 3D Euclidean distance

between the two points. Once these correspondences are computed, the best trans-

formation between the point sets is found. In Equation 2.2, we show the minimiza-

tion problem that must be solved to compute the best (in a least-squares sense) rigid

transformation between the two point sets. This transformation consists of a rotation

matrix R and translation vector t .

min
R,t

1

N

N∑
i=1

‖Rai + t −bi‖2 (2.2)

An iterative solution to this optimization problem was originally proposed in

[164] and later a closed form solution using quaternions was introduced [81]. After

applying this transformation to point set B , the correspondences are re-estimated and

this procedure is repeated until convergence. This algorithm is guaranteed to converge

to a local minimum. However, in practice, there are many local minima, so the initial

transformation from the feature correspondences must be very close to the true align-

ment or ICP will not improve the solution.

The correspondence search step above works well when aligning two entire ob-

jects, but researchers [164] have realized that to align partially overlapping objects,

only points that have a correspondence within a specified distance threshold, Dmax

should be used when computing the aligning transformation. That is, the correspon-

dence search should instead be the one shown in Equation 2.3.

bi =


ar g min

∀p∈B
d(ai , p) if d(ai ,bi ) < Dmax

undefined otherwise
(2.3)

Our contribution in Chapter 4 is motivated by ambiguities that arise from the use

of this correspondence function.

There have been many improvements to ICP. Phillips and Tomasi [125] noted that

the original ICP algorithm performs poorly in the presence of outliers and addressed

this problem by introducing a fractional point set distance, which accounts for out-
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liers in the correspondence identification step. It has also been noted that distance

metrics other than a point-to-point Euclidean distance can be valuable when comput-

ing the nearest neighbor from a point in one set to the other set of points. Namely,

the point-to-plane distance, introduced by Chen and Medioni [33] has been widely

used. Rusinkiewicz and Levoy [132] provided a rigorous performance evaluation of

several ICP methods. Mitra et al.[118] generalized ICP by, instead of considering the

problem as a point-set to point-set registration problem, treating the problem as align-

ing a point set with the surface which the target point set represents. Fitzgibbon [69]

proposed an energy function which can be directly minimized and has a large basin

of attraction, which is of great practical value. Finally, Specht et al. experimentally

compared the ideas of registering range images directly versus registering their corre-

sponding meshes [144]. They concluded that the performance is data set dependent,

but proposed future work on combining the two concepts.

There has also been work on registering colored point clouds — the type we are

interested in in this thesis. Kevin et al. [92] iteratively used color and structure infor-

mation separately to obtain a final registration. Wu et al. [156] introduced a technique

called Viewpoint Invariant Patches (VIP) that creates a viewpoint invariant descriptor

from local shape information, allowing colored point clouds to be efficiently and ac-

curately registered with as little as a single descriptor match. Smith et al. [143, 142]

extended a very popular feature descriptor for RGB images, the Scale Invariant Feature

Transform (SIFT, [112]) to register large, colored point clouds. Their method constructs

descriptors at points which are aware of the scale of structures in the scan, avoiding

many potential false matches. An example of such a registration is shown in Figure

2.19.
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Figure 2.19: The registration of several very large LiDAR scans of a building to pro-
duce a more complete building model. The position of the scanner that acquired
each scan is represented as a sphere colored to match the corresponding scan points.
(image from [143]).

2.3 3D Object Detection

Object detection is a very important step in many applications in computer vi-

sion and robotics. Given a 3D mesh or point cloud called the query object, the goal is to

determine where in a target scene the object exists, if at all. To motivate this problem,

in Figure 2.20 we show a LiDAR scan with several cars that have been detected.

Figure 2.20: Several cars detected in a LiDAR scan. (image from [123])
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In Chapter 4 of this thesis, we present a technique to verify that the resulting

position of a detected object is actually correct. As our contribution is independent of

the object detection method that was used to propose an object position, we are not

specifically interested in the inner workings of specific object detection algorithms, but

we describe the basic ideas here as it will ease our later discussion.

Before we begin, we note that Bravo and Farid [26] analyzed the effects of clutter

and orientation on the ability and accuracy of a human observer to recognize objects

in images. Their finding was that this problem is indeed very hard, even for a human.

In this section, we describe algorithmic methods to perform such detections.

There are three broad steps in most object detection processes. First, we generate

some type of descriptors for both the query object and the scene. Next, we perform a

matching procedure that attempts to identify correspondences between descriptors in

the query object and the target scene. Finally, we use the descriptor correspondences

to compute a transformation that aligns the model with its detected position in the

scene. In the following sections, we discuss each of these steps in more detail.

2.3.1 3D Descriptors

The purpose of a descriptor is to, as its name suggests, describe something about

an object. Descriptors can be either local or global. Local descriptors describe some-

thing about a small piece of an object (such as the curvature at a specific point), while

global descriptors attempt to describe the entire object simultaneously. In either case,

the descriptors can then be compared to other descriptors of the same type, typically

as a simple difference operation in the vector space that the descriptors occupy.

2.3.1.1 Local Descriptors

Local descriptors are computed at particular points of a scene or model using

information from points immediately surrounding the query point. For example, in-

formation like the point’s surface normal, the curvature near the point, or histograms

of the relative positions or neighboring points can be used to describe the point. To

provide a concrete example of such a descriptor, we will explain a very popular lo-

cal descriptor known as the spin image [87, 86]. This feature is well named, as it is

constructed by “spinning” a half-plane around the axis described by a point’s surface
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normal, constructing an image of the intersections of points with this plane. This pro-

cedure and descriptor are shown in Figure 2.21. In Figure 2.21a, the surface normal has

been computed at a point on a 3D model of a duck and is indicated as a green cylinder.

The half-plane (gray rectangle) is then rotated around this cylinder, collecting points

in bins defined on this plane as it rotates (the dark gray “pixels” on the half-plane). Fig-

ure 2.21b shows the resulting descriptor at four specific points on the model. We see

that the two points on top generate very similar looking descriptors, because locally

the model looks very similar at these two points. Conversely, the two points on the left

produce very different descriptors, as the model surface behavior is very different at

the two points.

(a) (b)

Figure 2.21: The spin image descriptor. (a) A model of a duck showing the con-
struction process of the spin image descriptor at a point. The gray plane is rotated
around the green axis, constructing a cylindrical histogram of the positions of the
points that it hits. (b) Four resulting spin image descriptors at different points on
the duck. We see that the two points on the left produce very different descriptors,
as the model surface behavior is very different at the two points. However, the two
top points have very similar descriptors, even though they are on different sides of
the model. This symmetry of the descriptor over the model leads to complications
in the matching process. (images from [86])

Brusco et al. [27] extended this descriptor to include color information corre-

sponding to the points. Other popular local descriptors include 3D Shape Contexts

[98, 73], and Point Feature Histograms [133, 134]. We refer the reader to these sources

for specific details of each descriptor.

Once several local descriptors have been matched (we denote the number of
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matched descriptors Nd ), the transformation that takes the model to its correct po-

sition in the scene can be computed using the matching model points mi and scene

points si as shown in Equation 2.4.

min
R,t

1

N

Nd∑
i=1

‖Rmi + t − si‖2 (2.4)

The idea is to find the transformation (R, t ) (a rigid transformation in this case,

described by a rotation matrix R and translation vector t ) that minimizes the distance

between the transformed model points and their corresponding scene points.

Computing and matching a descriptor at every point in the model or scene is

extremely computationally prohibitive. Because of this, several attempts have been

made to speed up this local descriptor computation and matching. Carmichael et al.

[30] used a coarse-to-fine approach, first computing descriptors on a downsampled

version of the model and scene, and then moving to higher resolution versions as the

algorithm progresses. Carmichael and Hebert [29] introduced a method which uses

Bayesian classification to perform a first pass through a large scene to identify points

that could potentially belong to the object, which significantly reduces the search space

for any chosen detection method. Matei et al. [116] detected automobiles in highly

cluttered, real-world scenes by speeding up the feature matching using an approxi-

mate nearest neighbor algorithm.

Unfortunately, if even one of these matches is incorrect, the computed transform

will also be incorrect. To remedy this, we attempt to ensure that the matches are geo-

metrically consistent. Consider a case where a feature at point A of the object matches

well to a point B in the scene, and a point C on the object matches well to a point D in

the scene. If the transformations from A to B and C to D are similar, we are much more

confident that we have actually found two correct matches. A sketch of the problem

that is addressed by ensuring geometric consistency is shown in Figure 2.22.

By using a method such as Random Sample Consensus (RANSAC [68]), subsets

of these local descriptor matches can be used to determine the transformation, and

the transformation that is most consistent over these subsets is selected as the final

transformation.
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Figure 2.22: Diagram showing geometric consistency.

2.3.1.2 Global Descriptors

An alternative approach to object detection is using global descriptors. That is,

rather than only using local information to compute a descriptor at several points on

the object, the entire object is used to generate a single descriptor that describes it in

its entirety. One example of a global descriptor is the Extended Gaussian Image (EGI)

[82]. Horn introduced the EGI as a description of a shape that is constructed by placing

point masses on a unit sphere corresponding to every model point. These masses have

a value proportional to the curvature of the object at the model point, and are placed

on the sphere where the normal of the sphere is equal to the normal of object surface

at the object point. Following this construction, we see that EGI’s encode the entire

shape of the object. EGI’s have the nice property that they are translation invariant,

and rotationally well behaved, as the EGI rotates exactly as does the object. As such,

if we can align the EGI’s, the alignment of the object is immediately obtained. Match-

ing these global descriptors can be performed efficiently in the frequency domain, as

demonstrated by Makadia et al. [114], allowing for fast object detect in large scenes.

Another global descriptor is Eigenshapes [28]. In this technique, range images of

an object are constructed by projecting the points onto several different planes (mul-

tiple viewpoints). Each of these range images is vectorized and the set of vectorized

range images is concatenated to form a matrix. The eigenvectors of this matrix have

been shown to be an excellent description of the object. By matching these eigenvec-

tors, we can determine which views, if any, of an object are present in a scene.
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2.3.1.3 Composite Descriptors and Other Techniques

Researchers have found that combinations of local and global descriptor meth-

ods can outperform either technique alone. For example Patterson et al. [123] com-

bined the local and global approach by first using spin images to detect candidate ob-

ject positions, and then using EGIs to verify these positions.

In addition to local and global shape descriptors, researchers have used a prob-

abilistic approach based on free-space models and an “occupancy grid” to determine

possible positions of objects in a scene [161]. While theoretically sound, these methods

are typically too slow to use to detect objects in real-world scenes.

2.3.2 3D Object Detection Verification

Upon completion of an object registration algorithm, a natural question to ask is

“how well did we do?” Several researchers have mentioned in passing that they have

performed some sort of verification at the end of their algorithm, but to the best of our

knowledge there has not been a study entirely dedicated to this very important step.

More importantly, often the verification procedure that is explained will necessarily

produce a good value after a specific kind of registration is performed, as the verifi-

cation procedure used is very closely linked to the registration method. In fact, many

times the “score” or “energy” of the registration is used directly as the level of certainty

that the registration was correct. A few methods that have been described are detailed

here.

Vasile and Marino [150] attempted to locate military vehicles in LiDAR scans

of outdoor scenes. Their final verification procedure, a “goodness of fit” test, used a

weighted spin image correlation coefficient. Chevalier et al. [34] located ground tar-

gets in large, outdoor scenes, first removing many scene points using a priori informa-

tion (e.g., that the scene contains a large ground plane and many tall, thin trees). Their

verification procedure is the same as in [87], where the raw score from a point match-

ing algorithm (ICP [164]) is used to represent the quality of the detection. Patterson

et al. [123] also used a verification procedure based on ICP scores, and additionally re-

quired hand-labeling parts of the input to provide exemplars of the objects of interest.

Smith et al. [142] proposed a verification function based on a learned linear combina-
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tion of several measures of registration accuracy, including variation in the normals of

corresponding points, the stability of the covariance matrix of the estimated transfor-

mation, and a novel boundary alignment check. While excellent results were obtained,

this training procedure limits the algorithm to use in cases where significant training

data is available, which is often not the case.

In each of these cases, the verification procedure is tightly linked to the object

detection procedure, inherently biasing it towards believing an object that was de-

tected using its metric is a good one. In contrast, our verification procedure described

in Chapter 4 could be used to provide an analyst with a method-independent, easily-

interpretable physical check of the final detected object position.

A technique which partially motivated our approach was introduced by Huber

[83, 84] who used a method based on visibility consistency to determine the quality

of alignment between two surfaces derived from range scans . A free space violation

occurs if, after alignment, points in one of the scans occur in the free space of another

scan’s perspective. A diagram of this situation is shown in Figure 2.23.

Figure 2.23: Diagram showing the concept of visibility consistency. (image from
[83])

This technique requires preprocessing to extract surfaces from the range images,

and hand-labeled training data to estimate the probability distributions of the dis-

tances between two surfaces along each ray in the case of correct and incorrect align-

ments. Our method maintains the idea of the free-space reasoning, but discards these

undesirable properties.

Mian et al. [117] introduced the related concept of “active sensor space viola-

tion” as a means of determining the accuracy of a model-to-scene registration. This
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technique requires the scene and the model to have approximately equal sampling

densities and is based on the number of model points that have a scene point within

a specified distance threshold. They also used the difference between the volume oc-

cupied by the registered sets of points and the volume occupied by the model itself to

determine a “bounding dimension” constraint that provides a coarse idea of whether

the point sets are approximately correctly aligned.

2.4 Object Segmentation

There are two main types of object segmentation, each conceptually very differ-

ent. The first type is object/scene segmentation, also known as foreground/background

segmentation or whole object segmentation. In this problem, we are given the known

approximate location of an object, and wish to separate it from the background of the

scene. The task can also be thought of as a labeling problem. That is, we wish to assign

a label “object” or “not object” to each member of a data set. These “members” are the

basic unit of representation in the data set, for example, pixels in image segmentation,

points in point cloud segmentation, or polygons in mesh segmentation. The goal is to

label all members that belong to the object as “object”, while labeling all of the non-

object points as “not object.” For example, if the “object” in question is a person, we

we would want to know which members in the scene belong to the person. The set

of members in this problem is very heterogeneous. That is, the intra-object members

will be wildly different from each other, even though these members all belong to the

same object. For example, the hair, skin, and clothing of a person all have very differ-

ent colors, textures, and surface orientations. This type of segmentation is very useful

in practice. One important use case is constructing model databases by quickly ex-

tracting objects of interest. An example of this type of segmentation is shown in Figure

2.24a.

The second type of object segmentation is object part segmentation, or parts-

based segmentation. Here we are interested in extracting coherent collections of mem-

bers which belong to a “part” of an object. For example, we wish to divide a human into

“arms”, “legs”, “head”, “torso”, etc. It can be argued that this problem is much easier,

since the intra-part description variation is much lower than the intra-object variation.
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In this problem, we are often interested in taking an object, and decomposing it into

its constituent parts. This type of segmentation is useful for building hierarchical de-

scriptions of objects. For example, 3D animators wish to be able to replace, modify, and

independently move different parts of a 3D character. They can use some techniques

described in this section to obtain initial segmentations that they can then refine to a

very accurate result. An example of this type of segmentation is shown in Figure 2.24b.

(a) (b)

Figure 2.24: Whole-object vs parts-based 3D segmentation. (a) Whole object seg-
mentation. Each object is shown in a different color. (image from [123] (b) Object
part segmentation. Each part of each object is shown in a different color. (image
from [89])

2.4.1 Image Segmentation

The problem of image segmentation is the problem of dividing an image into

parts, or regions, with different properties. This is exactly the problem we generically

described in the previous section, where now the scene is an image and the members

are its pixels. We wish to construct groups of pixels, where pixels belonging to the same

group are spatially close as well as similar in value. An example of a whole-object image

segmentation is shown in Figure 2.25.

In some cases, we are interested in coarsely separating an image into large re-

gions, for example “ground” and “sky.” This type of segmentation is useful for catego-

rizing images (urban, landscape, etc.), and for other “higher level” vision tasks.
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(a) (b)

Figure 2.25: An example whole-object image segmentation. (a) An image of a sol-
dier. (b) The soldier has been segmented from the background. The foreground pix-
els are shown, and the background pixels are omitted (white). (images from [130])

The ultimate goal of both of these types of segmentation is generally scene un-

derstanding. We wish to acquire input from sensors and then automatically, or least

semi-automatically, infer high level information about what is present and/or happen-

ing in the scene.

A good survey of image segmentation techniques is provided in Pal and Pal [121].

These methods can roughly be broken up into “clustering methods”, “contour meth-

ods”, and more recently “graph-cut methods.”

Clustering-based segmentation methods, also known as “region” methods, use

statistics and spatial proximity of the pixels in an image to separate them into distinct

groups. Statistical clustering methods [99] can be applied directly as a naive attempt

to solve this problem. Kurita recognized that pixels are not natural entities, but rather

a side effect of the discretization and storage of the scene information [76]. They show

that by first locally grouping pixels into “superpixels”, it is easier and faster to obtain

semantic information about the scene. There have been several enhancements, par-

ticularly to the efficiency of this idea [2, 103]. In a similar approach presented by Xu

et al., the gradient of the image is smoothed, making the clustering more robust to

naturally occurring textures [157]. Felzenszwalb and Huttenlocher [67] showed that

this type of over-segmentation can be performed very efficiently using graph-theoretic
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techniques. However, as we show in Chapter 6, these naturally occurring textures often

prevent algorithms which sound nice in theory from performing as we would expect.

In contour-based segmentation methods, also known as “boundary” methods,

the goal is the same but the reverse approach is taken. Rather than directly attempt-

ing to group pixels together, the problem is formulated so that we attempt to divide

groups of pixels by studying their boundary. These methods operate under the as-

sumption that pixel intensities should change abruptly between different regions. In

contour-based segmentation, we change the shape of, or evolve, an initial boundary

so it reaches an optimal state with respect to an energy function in the hope that it

nicely divides the pixels into distinct sets with similar properties. These methods typi-

cally evolve the boundary following a forcing function which is the solution to a partial

differential equation. The seminal works in this area [35, 90] have been followed by

significant study and improvement, including recent hybrid techniques [158].

A class of very powerful methods that have recently become very popular in im-

age processing is based on graph techniques. An image has an obvious representation

as a graph - each pixel is a node in the graph, and adjacent pixel nodes are connected

by edges. In Figure 2.26, we show the typical formulation of the graph constructed from

an image to which we can apply graph-theoretic techniques to obtain a segmentation.

F

B
(a)

F

B
(b)

Figure 2.26: The graph constructed from an image. Each pixel is connected to its
neighbors as well as to a foreground and background node. A cut divides the fore-
ground and background nodes by disconnecting edges. (Images adapted from [127])
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Graphs on images are a special case of a general graph (i.e. a structure with nodes

and edges), and this high connectivity is often exploited explicitly while solving graph

problems [95]. Boykov and Jolly [25] popularized the idea of performing segmenta-

tion on an image interpreted as a graph, as they demonstrated that the problem could

be solved extremely efficiently. This spurred a decade of follow up work [24, 23], as

it proved to be an extremely efficient way of solving many different image processing

problems. In these techniques, the user is required to scribble on the foreground and

background of the image, constraining the graph-cut problem to produce a useful ob-

ject segmentation. This user interaction is very non-invasive and produces excellent

results with very minimal effort on the part of the user. In a paper by Rother et al.,

instead of asking the user to scribble on the foreground and background, the user is

asked to position a rectangle around the object of interest [130]. This serves a similar

purpose of proving some information of where the object to be segmented is in the im-

age, and a very coarse idea of which colors are contained in the foreground and back-

ground. A similar graph-cut based segmentation technique, the normalized cut, was

introduced in [140]. This technique optimizes both the total dissimilarity between the

segments as well as the total similarity within the segments. A follow up work by Zeng

et al. [163] proposed a topological constant on the segmentation which is a very desir-

able property in real world segmentation problems. Boykov et al. [22] demonstrated

that the binary graph-cuts based segmentation can be extended to a multi-label prob-

lem. Their technique of “α expansion” iteratively solves binary graph cut problems,

allowing multiple objects to be segmented simultaneously.

Though graph-cut based segmentation methods are typically very fast, work has

been done to make them even faster. Li et al. [106] first performed an over-segmentation

using superpixels and then perform the graph cut segmentation on superpixels of the

image. The assumption is that all pixels in a superpixel belong the same terminal (ob-

ject or background), making the problem much much smaller and therefore faster to

solve.

In this thesis we directly utilize graph-cut based image segmentation, so we present

a full discussion of the methods in Section 5.1.
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2.4.2 LiDAR Segmentation

In this thesis we are interested in segmenting objects in LiDAR data sets. Due to

the huge size of these data sets, segmentation is a particularly important step in any

processing pipeline. By first segmenting objects from a scene, the size of the problem

for other tasks such as object detection is greatly reduced. While there has been a large

amount of work on the image segmentation problem, much less work has been done

to segment 3D objects from LiDAR point clouds.

Several methods have been proposed to perform parts-based segmentation in

depth images and colored point clouds. Dal Mutto et al. [39] attempted to automat-

ically segment an entire image into regions consistent in color and depth. The most

common technique for depth image object-part segmentation [126, 10, 7, 9] is to iden-

tify planar surfaces and label each surface as a part. Planes occur very frequently in

urban environments. For example, man-made objects such as streets, buildings, etc.

tend to be composed of many planar pieces. Because of this, it is a reasonable as-

sumption that a scene can be approximated as piecewise-planar. Trucco and Fisher

[149] segmented points by directly detecting and extracting planar surfaces in point

clouds. Yang [160] used the information theoretic principle of the Minimum Descrip-

tion Length (MDL) along with the Random Sample Consensus (RANSAC) idea to find

the planes that best describe the data in a very principled way. Yu et al. [162] used

an iterative plane fitting technique to segment small planar surfaces in an attempt to

compress the representation of a data set into a collection of polygons. An example of

their result is shown in Figure 2.27.

Biosca and Lerma [20] drew from recent work in fuzzy clustering to segment

point clouds into planar segments. While these techniques are very useful in industrial

applications such as quality control, as well as several tasks in robotics, in this thesis

we are interested in whole-object segmentation, so these techniques do not apply.

Other techniques, while still interested in parts-based segmentations, remove

the restriction of segmenting the data into planar objets. Liu and Zhang [111] used

spectral clustering to extract components of a mesh. They constructed an affinity ma-

trix between all of the points and then computed eigenvectors of this matrix which can

be interpreted as clusters. Kalogerakis et al. [89] separated meshes into meaningful
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Figure 2.27: The segmentation method proposed by [162]. (Image from [162])

parts by creating a conditional random field (CRF) on the mesh, with a unary term that

indicates how likely a polygon is to belong to a particular class, and a binary term indi-

cating how likely two adjacent polygons are to be next to each other. The parameters

of their model are learned from a training database. Klasing et al. [94] as well as Klas-

ing and Wollherr [93] used a single pass clustering algorithm to segment point clouds

into groups based only on their spatial proximity. A radially bounded nearest neighbor

(RBNN) tree is computed on the points, and then an iterative cluster merging strategy

is used to compute segments. This method is extremely fast, but the segmentation pro-

duced is quite coarse. Jagannathan et al. [85] used a curvature based region growing

approach that is parameter free. They used techniques of graph morphology to grow a

region by dilating the mesh graph and only keep nodes attached that pass a specified

curvature criterion. The curvature values of the newly added nodes are median filtered

so that the subgraph corresponding to the current segmented region behaves similarly,

and outliers are rejected. Anguelov et al. [8] relied on training data to learn classes of

objects. They then attempted to determine which one of the specified set of classes a

group of points belongs to. They created a Markov Random Field over the point set to

enforce the constraint that points near to each other are likely to belong to the same
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object. Graph cut inference was then used to classify the points in a scene.

A very different approach to the point cloud segmentation problem is to use prin-

ciples of perceptual organization. For example, Lee and Schenk [101] used principles

like parallelism, continuity, connectedness, and others to segment point clouds. Their

method is hierarchical, first grouping points into patches, then patches into surfaces,

and finally surfaces into objects.

The work that is most similar to ours was proposed by Golovinskiy and Funkhouser

[78]. The authors explored creating a graph directly on a point cloud, and using a min-

cut algorithm to separate objects from the background. They exploit the fact that ob-

jects touch the ground plane in only a very small region, so the min-cut on the graph

should separate the object from the ground. Foreground points are selected by the

user, and an approximate object radius must be provided. The weights on the graph

edges decrease with the distance from the foreground points. The relationship of this

method to graph-cuts based image segmentation techniques will become clear in our

discussion in Chapter 5. A example of the process and result of this technique is shown

in Figure 2.28.

Figure 2.28: The graph-cut method proposed by [78] to segment point clouds. Fore-
ground (green) and background (red) constraints placed by the user are shown, with
the resulting segmentation the short post object in this scene shown in blue. (Image
from [78])
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2.5 Inpainting

We next discuss inpainting, the problem of filling in a “hole" of missing data in

a data set. We start by reviewing prior work on image inpainting, and then go on to

discuss work related to the problem of inpainting in 3D data sets including meshes

and point clouds.

2.5.1 Image Inpainting

There are three main reasons for the existence of a hole in an image. First, origi-

nally valid data may have been corrupted. For example, a photograph may have been

folded or torn leading to corruption of the data it originally contained. Second, an oc-

clusion in the scene itself may have caused the missing data. For example, a person

could have been standing in front of a building so that the part of the building be-

hind them was never seen at all. Last, the hole could have been introduced by a user

performing operations on the image, such as moving or deleting objects. The name

inpainting comes from the name given to the process by which an artist manually cor-

rects blemishes in a physical painting.

As a motivating example of the power of inpainting, we show an inpainted image

in Figure 2.29.

(a) (b) (c)

Figure 2.29: A motivational example of inpainting. (a) An image of a trashcan with

a wall in the background.(b) The region to inpaint is indicated in bright green.(c)

The resulting inpainted image. If presented with this image alone, it would be very

difficult to notice that the image has been modified.
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As we can see, this technique is extremely powerful and can produce very im-

pressive results.

The inpainting problem is typically approached in one of two ways. The first way

is by solving a differential equation to produce the “smoothest” possible region inside

a specified hole. The second approach attempts to copy patches from elsewhere in the

image into the unknown region in a plausible arrangement. We discuss both of these

methods in the following sections.

2.5.1.1 Differential Equation Based Image Inpainting

One class of inpainting techniques solves differential equations over a hole in

an image, attempting to propagate information smoothly from the boundary into the

hole. These techniques have roots in equations from physics such as the heat equa-

tion. The heat equation describes the behavior of heat propagating in a medium. The

intuition is that if heat is applied to a system, it will be dispersed over the medium in

a smooth and well-defined fashion. In an analogous way, the colors in an image can

be dispersed over a missing region. Bertalmio et al. [15, 16] noted that this smoothness

should be in the direction of linear structures in an image. The direction of these linear

structures can be found by rotating the gradient of an image by 90 degrees, obtaining

the directions of least change. These vectors are referred to as the isophote directions

of the image. We denote the vector field of isophote directions over an image I (x, y) as

∇⊥(x, y). The condition that makes the pixel values in the hole continue the isophotes

as smoothly as possible is shown in Equation 2.5.

∇(∇2I (x, y)) ·∇⊥I (x, y) = 0 (2.5)

If we think of the Laplacian, ∇2I (x, y), as representing the edges of the image, this

equation shows that we want the change in these edges to be zero in the direction of

the isophotes.

Researchers have used this technique [15, 32, 31] to attempt to fill small holes

in an image. Oliveira et al. [120] presented a simpler and much faster approach with

similar results. The authors repeatedly convolved a diffusion kernel with the image,

building up color in the hole during each pass. Similarly, Telea [148] “pushed” the
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image values directly into the hole with a simple summation operation. Using these

techniques, reasonable results can be obtained on small, thin holes as shown in Figure

2.30.

(a) (b)

Figure 2.30: An example of differential equation-based inpainting of a thin hole. (a)
An image with a thin region to inpaint indicated in bright green.(b) The resulting
inpainted image. If we look very closely, there are some artifacts, but the result is
acceptable.

However, differential equation based methods are typically not suitable for filling

large unknown regions because they cause heavy blurring artifacts, as shown in Figure

2.31.

Pérez et al. [124] showed that though differential equation-based methods alone

are not adequate to fill large holes, modifying these techniques by introducing a guid-

ance field can produce very interesting effects. Further discussion of these techniques

is provided in Section 6.4, as we use the idea of a guidance field in our LiDAR inpainting

algorithm.

In this section we have shown that differential equation-based inpainting tech-

niques are not acceptable for inpainting large holes. As large holes are the focus of our

contribution in this thesis (Chapter 6), we will not focus on these differential equation-

based methods.



48

(a) (b)

Figure 2.31: An example of differential equation-based inpainting of a large hole.
(a) An image with a large hole to inpaint indicated in bright green.(b) The resulting
inpainted image. The inpainted region is much too blurry to be of any use. This
result was produced using our implementation of the technique in [124].

2.5.1.2 Exemplar/Patch Based Image Inpainting

A second, and recently popular, class of techniques to inpaint image holes is

referred to as “exemplar-based” or “patch-based” methods. As their name indicates,

these methods attempt to fill a hole in an image by copying pixels from elsewhere in

the image into the hole. These patches of pixels should have good continuation from

the known region into the unknown region. Of course, since we have no hints about

what actually appeared behind the hole in the image, our goal is to create an image

which seems plausible. A sketch of filling one patch using another from elsewhere in

the image is shown in Figure 2.32.
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Figure 2.32: A conceptual demonstration of patch based inpainting. (a) An image

with a hole (white) to be inpainted. A source patch, ψS that would be good to use to

fill the target patchψT is indicated. (b) The target patch properly filled.

In Figure 2.33, we show intermediate outputs of a patch-based inpainting algo-

rithm used to inpaint a large region in the image. We can see that the hole is filled

gradually one patch at a time rather than all at once, as was the case in the differential

equation-based methods in the previous section.

(a) (b) (c) (d)

Figure 2.33: Intermediate output of a patch based inpainting. (a) An image to be
filled. The region to be filled is indicated in bright green. (b) The resulting image af-
ter 20 iterations. (c) The resulting image after 100 iterations. (d) The final inpainted
image.

Instead of simply copying the patches as-is into the hole, Drori et al. [63] demon-

strated that compositing patches using a multi-scale Laplacian pyramid approach helps

ensure that no artifacts are visible at the edges of patches.

It has been repeatedly shown that the order in which these patches are copied
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is important. In a very popular work, Criminisi [37] suggested that patches should

be copied in an order which attempts to preserve linear structures in the image. By

preferentially selecting to fill patches where the gradient of the image is strong at the

hole boundary, the chance of preserving these linear structures is much higher. They

pointed out that the continuation of these linear structures is critical to human in-

terpretation of the resulting inpainted image. If the linear structures are broken, it is

almost always obvious that the image has been modified. In Figure 2.34 we show what

can happen if the fill order is chosen inappropriately.

(a) (b) (c) (d)

Figure 2.34: The effect of bad fill order on an inpainting result. (a) An image to be in-
painted with a the hole indicated in white. The region to be inpainted is indicated in
white. (b), (c) The resulting image after several iterations. In this case, the hole has
been filled from the bottom up. In this extreme example, there is nothing near the
bottom-center of the hole indicating that it is incorrect to copy full green patches.
(d) The final inpainted image. We see that the blue/green boundary was not well
preserved. (Images from [37])

We see that the linear structure (the line separating the green and blue regions

of the image) was not inpainted as we would like. By starting at the bottom and filling

upwards, the algorithm had no reason not to copy green patches into the hole, even

though with a global perspective we can see that this was not the best choice. We dis-

cuss the criteria used to select which patch to fill in detail in Chapter 6. Following

similar motivation, Xu and Sun [159] determined the filling priority of a target patch by

computing a measure of the similarity to nearby target patches. Target patches prior-

itized in this fashion are conceptually similar to detecting linear structures explicitly,

but this technique seems to be more robust to noise and to perform better on several

example images.

There have been a very large number of small improvements on the general con-
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cept of patch-based inpainting. Goyal and Diwakar [79] limited the region to search

for source patches to a window of specified size around the target patch rather than

searching the entire image. Sun and Jia [146] introduced two very useful ideas. First,

source patches are not allowed to be only exactly from the original image, but also a ro-

tated and mirrored version of the image. This allows for a much larger set of candidate

patches, which is intended to improve the overall quality of the inpainting. A second

contribution of this work is to allow the user to indicate a collection of paths that must

be completed first. Since these paths are a 1D chain of patches, the problem is small

enough to be solved globally. By using dynamic programming, the lowest total energy

completion along the paths is found. The idea is that the most important structures in

the image will definitely be completed as well as possible, leaving only near-uniform

regions which should be relatively easy to successfully inpaint.

(a) (b) (c) (d)

Figure 2.35: An example of the idea proposed in [146]. (a) An image to be inpainted.
In this example we wish to remove the pumpkin. (b) The hole to inpaint is shown
in blue, and the user specified paths to fill first are shown in bright green. (c) The
resulting image after filling only along the paths. (d) The final inpainted image, es-
sentially solving several much smaller and easier problems. (Images from [146])

Ramsing and Ruikar [128] proposed several small modifications the basic greedy

patch-based inpainting algorithm, including a regularization term to prevent the usual

patch priority values from becoming less discriminative as the filling proceeds towards

the center of the hole.

While most patch based inpainting techniques are greedy, there has been an at-

tempt at extending this idea to use a globally optimal solution. Komodakis and Tziri-

tas create a grid of unknown patches, similar to a jigsaw puzzle [97]. The problem is

posed as a massively multi-label graph labeling problem, the solution to which is ex-

actly the inpainted image. While this formulation is certainly appealing, this type of
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graph problem has only recently had a reasonable computational solution [6]. The in-

painting framework via a labeling problem is introduced, but the key to the tractabil-

ity of the technique is priority belief propagation and dynamic label pruning. Even

with this massive speed up to traditional belief propagation, the technique is extremely

slow. For very low resolution images (< 200×200), the technique takes tens of minutes.

Since the complexity grows exponentially with the image size, this technique is not yet

feasible for real-world images.

Simakov et al. [141] introduced the notion of “bidirectional similarity” between

two images. That is, all of the information in one of the images must be present in the

other image, and vice versa. This metric can be optimized to perform image comple-

tion, as it helps ensure that structure cannot be present in the output image if it was not

present in the input image, leading to necessarily artifact-free output. While the au-

thors apply a general version of this metric to solve many different image processing

problems (re-targeting and automatic cropping), by optimizing their coherence term

the metric can be applied to inpainting. The authors define this metric as the devia-

tion of the target T from coherence with respect to the source S. Namely, it measures

if there are any patches in T which are not present in S. This is a very good definition

of undesired visual artifacts, and can be written as in Equation 2.6.

coher ence(S,T ) = 1

NT

∑
Q⊂T

min
P⊂S

D(Q,P ) (2.6)

We search for the target region T which minimizes this metric, as shown in Equa-

tion 2.7.

Tar g min
T ′ coher ence(S,T ′) (2.7)

Here, NT is the number of patches in the unknown region, and D(Q,P ) is any

distance metric between two patches. This is an intuitive formulation, but minimizing

it directly is computationally prohibitive. As such, the authors go on to explain an

iterative algorithm to minimize this objective function. While this method works well,

it is very slow, taking 5 minutes for images on the order of 250x200 pixels. Barnes et al.

[11] presented a randomized algorithm known as “Patch Match” for constructing the
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Nearest Neighbor Field (NNF) which can be used to significantly speed up any patch

matching function. It is based on the premise that if the location of a good source patch

for a particular target patch is known, the locations of many neighboring patches can

also be guessed. More recently, this idea was taken one step further by Barnes et al. [12]

by extending the possible patch set to allow for rotations of patches, while still keeping

the massive performance increase. Though these results are very impressive, in this

thesis we have chosen to use a traditional greedy patch-based inpainting method for

our work in Chapter 6 because it is a better framework in which to to isolate, explain,

and analyze our contributions, versus having them be only a small part of a very large

and complicated system.

Some researchers [21, 155] have extended image inpainting techniques to in-

paint sequential series of images (video) using similar methods. Wexler et al. [155]

introduced a multi-scale method of inpainting, where the solution is found in very

highly down-sampled versions of the images, and used to help complete the next high-

est level, until the original resolution solution is reached. The authors note in their

problem, finding a patch that is temporally consistent is more important than finding

the patch that actually minimizes the patch distance function. It is exactly this notion

that motivates our work in Chapter 7.

2.5.1.3 Working in the Gradient Domain

Several researchers have noted that working in the gradient domain rather than

directly on an image can produce better results. Shen et al. [139] argued that instead of

inpainting pixels directly, the image gradient field should be inpainted, and the image

reconstructed from this gradient field. Liefers and Tan used a similar technique to

remove shadows from images while maintaining the texture beneath them [107]. Levin

et al. realized that by synthesizing image gradients and then reconstructing the image

from the gradients, a much smoother completion can be obtained [102]. As we use this

concept as the basis for a part of our LiDAR inpainting algorithm, we explain this type

of procedure in detail in Section 6.4.
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2.5.1.4 Inpainting Quality Analysis

The quality of an inpainting algorithm result is very difficult to quantify. An obvi-

ous thing to do is remove a known section of an image, inpaint the hole, and compare

the resulting image to the original image. However, this is not necessarily a good judge

of the quality of the completion. The inpainted region can look very different (espe-

cially at a per-pixel level) from the ground truth region, yet still look very convincing.

This “convincingness” is exactly our goal. Kawai et al. [91] used the idea of “evaluation

by questionnaire”. The authors simply ask humans questions like “which image looks

better?”, etc. to validate that their algorithm produces believable results.

2.5.1.5 Texture Synthesis

Texture synthesis is a very similar problem to inpainting, but it is specified slightly

differently. Rather than have an image with a missing region, in texture synthesis we

start with a small patch of texture, and wish to extend that patch to make a larger image

with the same texture. As an example, one could start with a small patch of strawber-

ries and create a large patch of strawberries, as shown in Figure 2.36.

(a) (b)

Figure 2.36: An example of texture synthesis. (a) A small patch of strawberries. (b)

A large patch of strawberries created using a texture synthesis algorithm. (Images

from [66])
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We are not directly interested in this problem in this thesis, but as some tech-

niques are similar to patch-based inpainting, a brief review of the prior work is war-

ranted.

Efros and Leung [65] constructed a Markov Random Field (MRF) on the source

texture and synthesized one pixel at a time based on the probability of the occurrence

of a pixel given its neighbors in the already known region of the resulting texture. Efros

and Freeman [64] appended existing patches to the existing texture using a graph-cut

technique to find the best boundary at which to join two patches. Essa and Kwatra

formulated the texture synthesis problem as a global energy minimization problem so

that the entire textured region is optimized simultaneously [66]. As with most global

techniques, it is much slower than competing algorithms, taking around 10 minutes

for even a very small (256x256) texture.

2.5.2 3D Hole Filling

In Chapter 6 of this thesis, we present a solution to the problem of filling large

holes in LiDAR data. There has been previous work on filling holes in similar types of

data. The approaches that have been demonstrated fall into two very separate cate-

gories; inpainting depth images and inpainting 3D structure directly.

2.5.2.1 Depth Inpainting

Stavrou et al. [145] used 2D image repair algorithms directly on the depth im-

age of a LiDAR scan to directly determine reasonable depths in the hole. However,

their technique is only demonstrated on very simple scenes with very simple objects.

Bhavsar and Rajagopalan inpaint depth directly [19]. As with any technique that per-

forms inpainting on the depth image directly, the result is necessarily very coarse, and

certainly does not lead to accurate reconstructions of the 3D surfaces. Wang et al. [154]

simultaneously inpaint color and depth values, but again only in very small holes. The

typical style and size of the holes these methods attempt to inpaint is shown in Fig-

ure 2.37. We will show in Section 6.3 that this approach indeed only works for ex-

tremely small holes, or holes that have approximately uniform depth, neither of which

are properties of the holes that we are interested in.
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(a) (b)

Figure 2.37: An example of depth image hole filling. (a) A depth image with several
small holes. (b) The holes filled using the algorithm presented in [154]. (Images from
[154])

2.5.2.2 3D Hole Filling

There have been several previous approaches to filling holes in 3D data sets.

Sharf et al. [138] proposed a hole-filling algorithm for point sampled surfaces that used

a coarse-to-fine approach. First, the rough geometry in the hole was estimated, then

detailed structure was copied from elsewhere in the model to refine the initial esti-

mate. Finally, a series of elastic warps was applied to ensure the copied patch matched

the surrounding hole. While acceptable results were shown, the authors noted several

problems with this approach. These problems included the high number of degrees of

freedom in aligning two point-sampled surface patches in 3D, the difficulty of defining

a coordinate system in which to work, and the boundary of a hole being ill-defined in

a point-sampled surface.

Park et al. [122] extended this work to point clouds with associated colors. In

the final step, rather than applying elastic warping transformations, a height field is

formed and a Poisson equation is solved to join the copied patch of points smoothly

to the points defining the hole. Becker et al. [13] also proposed copying 3D patches

of structure directly into a 3D hole. This technique relies on solving a computationally

complex 3D registration problem at each iteration of the inpainting. Additionally, there

is no guarantee that the inpainted 3D points correspond to a reasonable depth map

from the scanner’s original perspective. In our research, we take a similar approach to

copying structure from elsewhere in the scene into the hole, but since we work in the

depth image gradient domain rather than directly in 3D, the complexity of the process
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is greatly reduced and we avoid the problems mentioned above.

Salamanca et al. [135] filled holes in meshes by applying inpainting techniques

to local depth-image style projections of points around the hole. An example of their

results is shown in Figure 2.38.

(a) (b)

Figure 2.38: An example of mesh hole filling. (a) A mesh of a sculpture with several
small holes. (b) The holes filled using the algorithm presented in [135]. (Images from
[135])

Wang and Oliveira [153, 152] used a Moving Least Squares (MLS) approach to

create a smooth surface through the data points on the outside of the hole boundary.

While conceptually simple, this technique is only capable of generating very smooth

surfaces, which are non-ideal in many situations.

Verdera et al. [151] extended the differential equation based inpainting methods

mentioned in Section 2.5.1.1 to work directly on meshes. The authors view the existing

points as a surface that is the zero level set of an unknown function. By solving for this

function with a variational approach, the surface is automatically smoothly interpo-

lated. Naturally, this suffers from the same problems as in differential equation based

image inpainting, namely that the reconstruction over holes of any appreciable size is

noticeably too smooth.



CHAPTER 3

Custom LiDAR Tools

While image processing can be considered a relatively mature field, LiDAR processing

is a more recent problem. As such, there are many tools readily available for doing

basic image processing tasks. For example, Matlab has tools for basic image process-

ing operations (blurring, differencing, frequency analysis, etc.) There are also several

user-level software packages for editing images, including GNU Image Manipulation

Program (GIMP) and Adobe Photoshop. No such packages are available for general-

purpose LiDAR data processing and manipulation, but we need these types of tools

to carry out the work in this thesis. We outline here the main tools that we developed

and used to support the contributions in our research. First, we developed a synthetic

LiDAR scanner to produce data sets similar to those that would be acquired from a

real LiDAR scanner, but based on artificial 3D models instead of real world scenes.

Second, we implemented an interactive recoloring algorithm based on resectioning to

transfer the color from a digital photograph onto a LiDAR scan. Finally, we mention

several other tools that we developed to study and test known algorithms and to sup-

port related work. We released all of these tools under open-source licenses for other

researchers to find and use, accelerating the advancement of the field.

3.1 A Synthetic LiDAR Scanner

When starting to study any problem, it is useful to start in the most controlled

setting possible. For example, one should usually study an algorithm in a noise-free

environment, before moving on to study its operation in the presence of noise and

outliers. Unfortunately, LiDAR data is inherently noisy and full of outliers. Therefore,

starting to work on the problems in this thesis directly on a real, “in the wild” data set

is non-ideal. To control the situation and allow for the gradual increase in complexity

that we would like, we designed a synthetic LiDAR scanner to allow us to produce data

sets of scans of 3D models.

Additionally, while LiDAR scanners are becoming more common, and their cost

58
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is steadily decreasing, they are still prohibitively expensive. A research lab would need

to be very sure they wanted to head in the direction of LiDAR research before decid-

ing to purchase a scanner, funds permitting. Even if a LiDAR scanner is available to

a researcher, it can be quite time consuming to physically set up a collection of ob-

jects and scan them. This tool allows a researcher to compose a digital scene of 3D

models and “scan” it by finding the intersections of many rays with the scene using

techniques from ray tracing. This allows the researcher to quickly and easily produce

his or her own LiDAR data. The synthetic LiDAR scan data can also be used to produce

data sets for which a ground truth is known. This is useful to ensure that algorithms

are behaving properly before moving to real-world LiDAR scans. If more realistic data

is required, noise and false/missing detections can be added to the points to attempt

to simulate a real LiDAR scan.

The synthetic LiDAR scanner developed here was submitted to the Insight Jour-

nal [41] so it could be used by other researchers. It was received well and was published

in a special edition of the Kitware Source containing the strongest submissions of 2010

[42]. It has since been adopted by and integrated into the Point Cloud Library (PCL), a

recently released software toolkit for 3D data processing.

3.1.1 Scanner Model

We based the synthetic scanner on the Leica HDS3000 LiDAR scanner. This scan-

ner acquires points on a uniform spherical grid. The first point acquired is in the lower

left corner of the grid. The scanner proceeds to acquire strips of points bottom to top,

and then moves to the next strip from left to right. Each point is computed by ray cast-

ing. That is, we compute the 3D point corresponding to the intersection of the directed

ray with the scene triangle closest to the scanner. This ray casting is performed using

a Modified BSP Tree, a spatial data structure to facilitate ray-triangle set intersections

that is much faster than a full linear search. This data structure proved significantly

faster than an Octree [136] for this task.

Several parameters defining the scanner orientation, angular resolution, angular

bounds, and noise model can be specified. The synthetic scan output is identical to

that from the real Leica scanner, in the proprietary PTX ASCII format.



60

3.1.2 Synthetic Scanner Parameters

It is necessary to set several parameters before performing a synthetic scan.

• Scanner position - the 3D location of the scanner in the scene

• Min/Max elevation angle (φ)

• Min/Max azimuth angle (θ)

• Scanner transformation - the orientation of the scanner in the scene, specified

as a 4x4 transformation matrix.

• Number of strips (sampling in the θ direction).

• Number of points per strip (sampling in the φ direction).

To demonstrate the angles which must be specified, a (φ= 5,θ = 4) scan of a flat

surface was acquired, as shown in Figure 3.1a. Throughout these examples, the red

sphere indicates the scanner location, the white lines represent the scan rays, and the

blue points represent scan points (intersections of the rays with the object/scene). The

points were acquired in the order shown in Figure 3.1b.

(a) (b)

Figure 3.1: Labeled images of the acquisition process. (a) A 3D view of the acqui-

sition of the scene containing a plane. (b) The synthetic LiDAR points are labeled

according to the order in which they were acquired.
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The azimuth (θ) angle of a ray is shown in Figure 3.2a, 3.2b, a top view of the

scan of a flat surface. The min and max azimuth angles are labeled. Its range is −π
to π, allowing the scanner to acquire points in a full 360◦ range (to scan the inside

of a model of a room, for example). Since we often perform scans of scenes only “in

front of” the scanner, we have oriented the coordinate system so that θ =−π
2 is left and

θ = π
2 is right, so that scans with symmetric angles from either side of “forward” can be

specified intuitively.
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(a) (b)

(c) (d)

Figure 3.2: Diagram of the scanner angle settings. The scanner is represented as

a red sphere, while the acquired points are shown in purple. (a)Minimum azimuth

angle (viewed from above) (b) Maximum azimuth angle (viewed from above) (c) Min-

imum elevation angle (viewed from the side) (d) Maximum elevation angle (viewed

from the side)

The elevation angle,φ, is shown in Figure 3.2c and 3.2d. The minimum and max-

imum elevation angles are labeled. The elevation angle can range from −π
2 (down) to

π
2 (up).
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3.1.3 Obtaining Point Normals

In a real LiDAR scan, the only information gathered is the 3D location of the

points relative to the scanner. In a synthetic scanner, we get extra information, namely,

the normal of the surface that the ray intersected. This is a nice addition as it allows

for even more ground truth data of a scan - that is, one can compare the normals esti-

mated by an algorithm to the actual normals of the surface that was scanned, a luxury

that is never possible from a real scene. A scan of a sphere is shown in Figure 3.3 to

demonstrate this.

Figure 3.3: Scene intersections and their normals

3.1.4 Noise Model

By default, a synthetic scan is “perfect” in the sense that the scan points actually

lie on a surface of the 3D model as in Figure 3.4a. In a real world scan, however, this is

clearly not the case. To make the synthetic scans more realistic, we modeled the noise

in a LiDAR scan using two independent noise sources: line-of-sight and orthogonal.

Line-of-Sight (LOS) noise is error in the distance measurement performed by the

scanner. It is a vector parallel to the scanner ray whose length is chosen randomly

from a Gaussian distribution. This distribution is zero mean and has a user-specified

variance. An example of a synthetic scan with LOS noise added is shown in 3.4b. The

important note is that the orange (noisy) rays are exactly aligned with the gray (noise-

less) rays.

Orthogonal noise models the angular error of the scanner. It is implemented

by generating a vector orthogonal to the scanner ray whose length is chosen from a

Gaussian distribution. This distribution is also zero mean and has a user specified
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variance. An example of a synthetic scan with orthogonal noise added is shown in

3.4c. Note that the green (noisy) rays are not aligned with the gray (noiseless) rays, but

they are the same length.

(a) (b) (c)

Figure 3.4: The noise model of our synthetic scanner. (a) A noiseless synthetic scan.
The returned points are exactly where the rays intersect the model triangles. (b) A
synthetic scan with line-of-sight noise added. The returned points are the intersec-
tions of the rays with the model triangles, with error added in the direction of the
rays. (c) A synthetic scan with orthogonal noise added. The returned points are the
intersections of the rays with the model triangles, with error added in the direction
orthogonal to the rays.

3.1.5 Example Scene

As an example, a car model with ∼ 20k triangles was scanned with a 100× 100

grid. On a computer with a Pentium 4 3GHz processor with 2GB of RAM, the scan took

0.6 seconds. Figure 3.5 shows the model and the resulting synthetic scan.

(a) (b)

Figure 3.5: A car model and the resulting synthetic scan. (a) A 3D model of a car. (b)
A synthetic scan of the car model. Each point indicates an intersection of a LiDAR
ray with the model.
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3.2 Recoloring a LiDAR Scan using an External Image

Some laser scanners come with an internal color camera inside the device. This

camera makes it easier for surveyors to align their scans in the field, as well as recall the

data that they captured during later review. Unfortunately, these cameras are often low

quality compared to a consumer digital camera. Furthermore, they are not accurately

registered to the scan points, and this alignment worsens over time without expensive

factory recalibration. In practice, by moving the scanner around to perform scans, it

inevitably is rattled and shaken enough for the camera to become misaligned. After

6 years of scanning, our scanner’s camera is highly misaligned with the 3D measure-

ments, to the point that the reported colors are nearly useless.

An additional problem with the scanner’s internal camera is setting the expo-

sure. In the case of the Leica HDS3000, one must set the scanner’s camera exposure

manually. The image is viewed on a laptop, and the exposure can be adjusted until it

looks reasonable. Unfortunately, in real scanning conditions (a sunny day, glare on the

laptop screen, etc.) this is very hard to do accurately.

One solution to all of these problems is to capture an additional image of the

scene with an external camera. Even a consumer level digital camera is more than

enough - the scans are typically 500-1000 pixels square, so even a 1 mega-pixel cam-

era has more than enough resolution, and the color quality is superior to the internal

scanner camera.

3.2.1 Correspondence Selection

There have been some attempts to register color images to point clouds auto-

matically [74, 115, 75, 5, 40, 1, 110], but for our purposes a manual method was simple

and effective. We present here an interface to manually select corresponding points

in two data sets. The data sets can each be either an image or a point cloud. If both

data sets are images, the functionality is equivalent to Matlab’s ‘cpselect’ (control point

select) function. There are many uses of selecting correspondences. If both data sets

are images, the correspondences can be used to compute the fundamental matrix, or

to perform registration. If both data sets are point clouds, the correspondences can be

used to compute a landmark transformation. If one data set is an image and the other
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is a point cloud, the camera matrix relating the two can be computed.

3.2.2 Graphical User Interface

The GUI is divided into a left pane and a right pane. Each pane supports ei-

ther an image or a point cloud, allowing the user to select correspondences between

a pair of images (for image registration seeds), a pair of point clouds (for point cloud

registration landmarks), or correspondences between an image and a point cloud (for

resectioning style operations). Figure 3.6 shows a screenshot of the correspondence

selection interface.

Figure 3.6: Screenshot of the correspondence selection GUI. Three corresponding

points have been selected in an image and a point cloud. The point cloud is pseudo-

colored by the intensity of the returns.

In the example the point cloud is pseudo-colored. In this application, we are

finding correspondences between an image and a LiDAR scan, which will be used to

compute the location and orientation of the camera in the scanner’s coordinate sys-

tem. This makes it possible to re-color the LiDAR points with the image colors. The

pseudo-coloring of the points encodes their return intensity, which makes it possible

to differentiate different materials, making it much easier to identify and select appro-
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priate correspondences. If the points are all colored with the same color, it is very hard

to identify such correspondences.

3.2.3 Resectioning

In this section, we discuss the procedure of resectioning, or estimating the cam-

era matrix that maps a set of 3D points to their known 2D correspondences in an image.

A more complete theoretical discussion is available in [80].

As we mentioned in the previous section, we have acquired an image of the scene

with a camera external to the LiDAR scanner. As this camera cannot be placed exactly

at the source of the laser (the scanner housing is physically in the way), it will necessar-

ily capture an image from a different perspective than the scan points were acquired.

To map the colors from the external camera onto the scan points, we can compute

the camera matrix that represents the projection of a 3D point onto a 2D image plane.

We assume a perspective projection model, that is, a mapping from the scene points

(X ,Y , Z ) to the image points (x, y) via a 3×4 projection matrix P , as shown in Equation

3.1.


x̂

ŷ

ω

=


P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34




X

Y

Z

1

 (3.1)

There are several important things to mention here. First, we have used x̂ and ŷ be-

cause we will later normalize this vector to obtain the x and y that we are interested

in. Additionally, the point that results after applying the projection is only defined up

to a scale factor, which we have indicated via ω. Finally, we must append a 1 to our 3D

Cartesian coordinate to create a 4-component homogeneous point.

We divide the left hand side by its last entry, and make the substitutions x = x̂
ω

and y = ŷ
ω to obtain
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x

y

1

∼


P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34




X

Y

Z

1

 (3.2)

Here, the notation indicates the vectors on the left and right sides of the equa-

tion are equal up to a scalar multiple. Multiplying the right hand side and dividing the

result by its last entry we obtain


x

y

1

=


P11 X+P12Y +P13 Z+P14
P31 X+P32Y +P33 Z+P34

P21 X+P22Y +P23 Z+P24
P31 X+P32Y +P33 Z+P34

1

 (3.3)

We see that each correspondence generates two equations (one for x and one for y).

To solve for P , we need at least 6 correspondences (since there are 12 entries in P

and each correspondence generates 2 equations). Since these equations are linear in

the entires of P , we can rearrange them to write the equation in terms of a vectorized

version of P , Pvec . That is:

APvec =
X Y Z 1 0 0 0 0 −x X −xY −x Z −1

0 0 0 0 X Y Z 1 −y X −yY −y Z −1





P11

P12

P13

P14

P21

P22

P23

P24

P31

P32

P33

P34



= 0 (3.4)
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However, in practice, with real world data sets of the accuracy we are used to

seeing with laser scanners, 8-10 correspondences are necessary to obtain a reasonable

result.

The two rows of A generated by each correspondence are stacked to form a 2N ×
12 matrix. A well known result from linear algebra is that the linear least-squares solu-

tion to an equation of this form such that Pvec has unit norm (‖P‖ = 1) is the singular

vector corresponding to the smallest singular value of A. After performing the singu-

lar value decomposition of A, A = U DV >, the last column of V is the singular vector

corresponding to the smallest singular value of A. We reshape this vector into a 3x4

matrix, forming our solution, P .

Though this is correct from a mathematical perspective, it is strongly suggested

to use the normalized direct linear transform, or “normalized DLT”. In this method, the

exact same procedure is performed, but instead of using the image points xi and the

3D points Xi directly, each set of points is first normalized so that it has zero mean,

the average distance of the image points to the origin is
p

2 and the average distance

of the 3D points to the origin is
p

3. This is carried out by constructing normalizing

similarity transformation matrices T3D and T2D and then transforming the points as

x̃i = T3D xi and X̃i = T2D Xi . The DLT procedure is then performed to compute the

normalized camera matrix P̃ , and the final camera matrix is obtained by applying the

inverse similarity transformations as P = T −1
3D P̃T2D .

In Figure 3.7, we show an example of recoloring a scanner image using an image

from an external camera.

In Figure 3.8, we show the point cloud colored by the new image. We see that not

only are the colors and contrast vastly improved, but the alignment is also correct. We

note that there are some white points along the edge of the hole in the grass in Figure

3.8b. These points are white because of the misalignment of the color image and the

LiDAR points (the white points on the edge of the mailbox erroneously overlap with 3D

points acquired in the grass).
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(a) (b) (c)

Figure 3.7: Recoloring the scanner image from a digital camera image. (a) The image
from the scanner’s internal camera. The image exposure is not ideal, and the image
is of low quality. (b) The image acquired by an external digital camera. (c) The colors
from the external camera mapped onto the scanner’s image.

(a) (b) (c)

Figure 3.8: Corrected alignment of color images with 3D points. (a) The points col-
ored by the original scanner image. The colors are poor quality, and not well aligned
with the points. (b) A highlighted region where the misalignment is noticeable. Note
the white pixels from the edge of the mailbox that appear in the grass. (c) The scan
points recolored by the external image after performing our recoloring procedure.
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3.2.3.1 Recoloring Scan Points

Once we have P , the projection matrix which maps 3D points to 2D image co-

ordinates, we can project all of the scan points using this projection into the image.

That is, for every 3D point X , we compute x = P X , the projection of the homogeneous

point. After converting from homogeneous coordinates to image coordinates by di-

viding x by its 3rd component, we check if the resulting image coordinate actually lies

inside of the image. If it does, we apply the color at this pixel to the scan point.

3.2.3.2 Recoloring Issues

There are two cases which present problems to this recoloring procedure. The

first is when the scanner sees parts of the scene that are not seen by the camera, as

shown in Figure 3.9a. Here, the scanner acquired points on the tree, but the tree did

not appear in the image. If we require these tree points in the scan to be colored, we

must perform the recoloring procedure again with a different image. The second case

involves self-occlusions that occur in the LiDAR data from the cameras perspective, as

shown in Figure 3.9b. Here the point X ′ naively projects to the same camera’s image

point as X ′′, but we see that if we were to apply the recoloring procedure described

in the previous section directly to this point, the wall in the background would take

the color of the foreground (car) object. To compensate for this occlusion, instead of

directly projecting a 3D point into the image, we intersect the line segment from the 3D

point to the camera location with a mesh of the scan points. If there is no intersection,

the point should be projected into the image and take on the color of the image pixel

as usual. If there is an intersection, the point has no way to obtain new information

from the image, so its color should remain unchanged.
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LiDAR

(a)

X'

X

LiDAR

X''

(b)

Figure 3.9: Recoloring problems. (a) The view of the scene seen by the scanner and
the camera. (b) Due to the different viewpoint, some image pixels have multiple 3D
points that project to them.

3.3 Other Tools

The synthetic LiDAR scanner and correspondence/resectioning tools were used

extensively throughout this thesis, and as such were worth discussing in detail. How-

ever, we have developed many other tools which are listed here for completeness.

These tools are all written as VTK filters so that they have a uniform interface and are

easily accessible to researchers already familiar with the library. We have published all

the work in the table below as various technical reports and magazine articles. Their

citations are provided in line.

A Greedy Patch-Based Inpainting Framework: A flexible platform

for testing patch based inpainting algorithms which allows easy re-

placement of the patch difference function and the priority function.

Published in a Kitware Source special edition: strongest submissions

of the year 2011 [43]
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Poisson Editing: An implementation of the hole filling and cloning

techniques described in [124]. Published in a Kitware Source special

edition: strongest submissions of the year 2011 [44]

Point set processing: We have written several operations on point

sets including outlier removal, curvature estimation, normal estima-

tion, and normal orientation. [45]

Clustering segmentation: An iterative clustering procedure based on

a Radially Bounded Nearest Neighbor search. [54]

Hough Plane Detector: Find planes in 3D point cloud data. [59]

K-Means Clustering: K-Means clustering is an excellent technique

for clustering points when the number of clusters is known. We have

implemented the algorithm along with the K-Means++ initialization

method which finds the global optimum much more frequently than

a naive/random initialization. [48]

Mean Shift Clustering: Mean shift clustering is an excellent tech-

nique for clustering points when the number of clusters is not known.

[49]
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A Conditional Mesh Front Iterator: A flexible mesh region growing

algorithm with easy-to-change boundary conditions. [47]

Super Pixel Image Segmentation GUI: A GUI to interactively set the

parameters of and see the resulting segments from three superpixel

segmentation methods including a graph-cuts based method, SLIC,

and QuickShift. [53]

Poisson Surface Reconstruction: A VTK wrapper and Paraview plu-

gin for Poisson surface reconstruction from point sets. [61]

Stratified Mesh Sampling: A Paraview plugin for stratified mesh sam-

pling. Stratified sampling is a technique to uniformly resample a

mesh. [52]

Point Set Surface Reconstruction: We have implemented a basic al-

gorithm to produce a mesh from a point cloud assumed to be a point

sampled surface. [50]

RANSAC Plane Fitting: RANdom SAmple Concensus (RANSAC) is an

iterative method to estimate parameters of a model. It assumes that

their are inliers in the data which are well explained by the chosen

model. We have implemented such an algorithm to estimates the

best plane in a point set. [51]



CHAPTER 4

Consistency and Confidence: A Dual Metric for Verifying 3D Object

Detections in Multiple LiDAR Scans

Object detection (described in Section 2.3), or locating a given object in a large, clut-

tered environment is an important step in many 3D data processing algorithms.

In problems including object detection, object recognition, and 3D model con-

struction, a common issue is aligning a 3D object model with a larger LiDAR scan. The

model is typically in the form of a triangulated mesh. In this chapter, we propose a

verification procedure using two complementary metrics that can be used on the out-

puts of any such alignments. We take as input a triangulated mesh representation of

a 3D model, one or more LiDAR scans of a scene, and an estimated transformation of

the model into the scene. We wish to evaluate the hypothesis that the object is present

at the given position. The verification procedure is independent of the method that

produced the location hypothesis, so it is objective and unbiased in deciding if the po-

sition is indeed reasonable and correct. The advantage of the dual metric is that we can

answer two independent questions simultaneously. We use a measure of consistency to

determine if the object is in a position that makes sense physically. We use a measure

of confidence to determine, if indeed the object is at a reasonable position, how much

of it we have observed. The values produced by our consistency and confidence mea-

sures are both between 0 and 1, so they are easy to interpret for any data set. Together,

the metrics enable a user to make a well-informed decision about the likelihood of an

object’s presence or the need for more scans of the scene to answer the question more

conclusively. The work in this chapter was published in [62].

A common choice of registration algorithm is Iterative Closest Points (ICP) [164].

ICP directly minimizes a cost function describing the difference between the two ob-

jects at their current positions and orientation. This value is often directly used as the

final “quality of match” value. To enable a model to be matched to a partial scan, the

ICP cost function is typically modified to include only points whose nearest neighbor

is within some threshold [132]. This drives the cost function to a very low value for a

75
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correct, partially overlapping match, but for an incorrect match, the value is still, by

definition, fairly low. Furthermore, the ICP cost function value generally depends on

the scale, sampling density, and parameterization of the problem, and is impossible to

interpret as an absolute measure of match quality. Throughout this chapter, we show

that our metrics are much more discerning of the actual quality of a match.

As a motivating example of the contribution in this chapter, consider the scene

in Figure 4.1.

(a) (b)

Figure 4.1: A motivating example of two detected object positions with similar

scores, one of which is correct, and the other incorrect. (a) A car model correctly

registered to the scene. (b) A car model incorrectly registered to the scene.

We will show in Section 4.3 that a typical ICP cost function will indicate that these

two positions are equally good, when we see that this is obviously not the case.

4.1 The Consistency Measure

The first measure we propose is consistency, which is based on the violation of

free space. That is, for a LiDAR ray to have reflected off of a scene point s, there must

have been no objects along the line segment from the scanner origin to s.

We place the model in the scene at a hypothesized location. For each detected

point in the scene, s, if the ray from the scanner through the point intersects the model,

we have a “comparable pair" with which we can reason about free space. We compute

this intersection efficiently by storing the model triangles in a modified BSP tree and
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using standard ray-triangle intersection techniques [113], [72]. The number of com-

parable pairs is denoted Nc . We know the direction of each scene point, s, from the

scanner, and denote its distance from the scanner as ds . The distance from the scan-

ner to the model intersection, m, is denoted dm . By considering the difference dm−ds ,

we can decide the consistency of the pair. If dm −ds ≥ 0, the scene point is in front

of the model point. This point could have been produced by either an occluding ob-

ject or the object in the correct position, so we label it consistent. If dm −ds < 0, the

scene point is behind the model point, which indicates that the LiDAR ray has passed

through the object. This is a contradiction to the model being located at the hypothe-

sized position, so we label the point inconsistent. To allow for noise in the acquisition

process as well as slight error in the alignment, we introduce a mismatch allowance, a.

We modify the conditions accordingly as given in (4.1) and Figure 4.2.

Ci =
 1 (dm +a)−ds ≥ 0

0 (dm +a)−ds < 0
(4.1)

dm
0

Ci

dsdm+a

0

1

Figure 4.2: Diagram of consistency function

It is important to note the fundamental asymmetry in the consistency function.

Model surfaces at equal distances in front of and behind a scene point would have

very different consistency values, since the former is physically contradictory but the

latter could have been produced by occlusion. Figure 4.3 illustrates the idea with three

examples of comparable pairs. In ray A, the scene point is significantly behind the
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model surface, so this point is inconsistent. In ray B, the scene point is only slightly

behind the model surface, so this point is consistent. In ray C, the scene point is in

front of the model, so this point is also consistent.

Scanner

A

B

C

Model intersection

Scene point
Model surface

Figure 4.3: Consistency example for 3 rays.

We assign each comparable pair a binary value of 1 (consistent) or 0 (inconsis-

tent) according to (4.1), and define the consistency of the model at the hypothesized

location as the average consistency over all comparable pairs:

Consistency = 1

Nc

Nc∑
i=1

Ci . (4.2)

We note that this reduces the problem of verifying a 3D hypothesis to a combination

of many 1D problems. We normalize by the number of comparable pairs to prevent

the consistency value from being a function of the sampling density or the size of the

object. A user can reasonably interpret this value between 0 and 1 without any other

information.

If multiple registered scans of the scene are available, the consistencies of each

scan should be combined into a total consistency score. It is assumed that the scene

does not change between scans. Since the consistency of each scan is independent,
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the total consistency after observing K scans is

Total Consistency =
∑K

k=1

∑N k
c

i=1 C k
i∑K

k=1 N k
c

. (4.3)

4.2 The Confidence Measure

If a model position is completely consistent, we can only declare the model could

be at the hypothesized location, not that it is at that location. For example, any ob-

ject model is consistent with being entirely behind a scanned wall. Our second mea-

sure, confidence, indicates the reliability of an estimate based on what proportion of

the model has been captured by the scan(s).

The confidence measure is based on the idea that a certain amount of informa-

tion, Ii , is associated with every model point. This information should be related to

how locally distinctive the point on the model is. For example, a point on the side

panel of a car should have low information, since it looks similar to any planar surface,

while the uniquely-shaped front bumper should carry more information. We require

that the information from all the points in the model sums to 1.

Generally, a 3D model is constructed by an artist who uses a higher density of

vertices to model more complex regions; this is the case for all the models in this chap-

ter. Thus, we can simply assign each point an equal amount of information, Ii = 1
Nm

,

where Nm is the number of points in the model. If the model vertices are distributed

uniformly (e.g., using an algorithm like [119]), the information content at each point

could be related to the quality of a planar fit, with more locally complex regions con-

taining more information. [109] proposed a more complicated method to determine

the information content of a point based on point density, planarity, change in nor-

mals, and the uniformity of the change in normals.

Before any scans are acquired, we set the observed information Oi for each model

point to 0. As scans are added, this value will increase to a potential maximum of Ii ,

the information content of the point. Each scanned scene point affects model points

surrounding it at the hypothesis location. If a scene point is nearly coincident with

a model point, it “uses up" that model point’s information- i.e., the model point has

been completely “seen". We define the incremental update rule for the influence of
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the j th scene point on the i th model point using a Gaussian function:

Oi ← min

(
Ii ,Oi + Ii e

−d2
i j

2σ2

)
(4.4)

Here, di j is the distance between the two points. σ determines the radius of the sphere

inside which model points are affected. One could reasonably choose σ to be a func-

tion of either the model bounding box volume mv or the median model vertex spacing.

For the experiments in this chapter, we set σ= 0.01mv .

Since the Gaussian function is negligibly small for |di j | > 3σ, we find all points

within 3σ of the scene point using a KD-tree [14] and compute the update for only

those points. Figure 4.4 illustrates an example of the information observation process,

showing the influence of one scene point on three model points.

Unseen

Model point
Scene point

Before observation

After observation
Seen

Figure 4.4: Confidence Example

The confidence that a model exists at a given location after all of the information

has been collected is

Confidence =
Nm∑
i=1

Oi (4.5)

where Nm is the number of model points.

We note that unlike the consistency measure, the confidence measures are not

independent from scan to scan, because any overlap in scans will “see" some of the

same model points. Therefore, the computation of the confidence over K multiple

scans is computed as if all scene points came from a single scan. The confidence equa-

tion does not change; the only difference is that the observed information is iteratively

accrued from all the points in all K scans.
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4.3 Experimental Results

In this section, we report the results of several experiments that demonstrate the

properties of our dual metric. All real LiDAR scans were acquired with a Leica HDS

3000 scanner with sample spacing approximately 3 mm on the object surface.

4.3.1 Cat Sculpture — Varying Position

We obtained a high precision triangulated model of a real cat sculpture using a

hand-held scanner. The dimensions of the bounding box of the model are 30x25x12cm.

We then LiDAR-scanned the physical sculpture in an unoccluded scene. We used spin

images followed by ICP to automatically estimate the position of the cat sculpture in

the unoccluded scan (Figure 4.5a). We computed the baseline confidence and con-

sistency values for this real-world registration. The confidence value is 0.544 because

we only acquired one scan covering about half the model. The consistency value is

0.792, due to slight misalignment in the registration process as well as scanner noise.

Throughout the experiments with the cat sculpture, we use a mismatch allowance of

2cm for the consistency calculations, and σ= 0.5cm for the confidence calculations.

We then placed the model behind the correct position, i.e., in the “shadow" of the

LiDAR scan (Figure 4.5b). Table 4.1 shows that the consistency value in this position

is very high, since almost all of the scan points do not contradict the hypothesized

location. We then placed the model in front of the correct position (Figure 4.5c). The

consistency is extremely low in this position, since the model is in front of the observed

scene points, clearly a contradiction to the hypothesis. In both the in front and behind

positions, the confidence measure is extremely low because there are almost no scene

points near the model.
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(a) Correct position (b) Model behind correct posi-

tion

(c) Model in front of correct po-

sition

Figure 4.5: Cat sculpture in varying positions.

Position Confidence Consistency

Aligned correctly (a) 0.544 0.792

Model behind scene (b) 0.003 0.995

Model in front of scene (c) 0.000 0.151

Table 4.1: Consistency and confidence values for varying model positions in Figure

4.5.

4.3.2 Cat Sculpture — Varying Occlusion

To demonstrate the effect of occlusion on our metrics, we scanned the cat sculp-

ture behind several different types of material. We used spin images and ICP to register

the model of the cat sculpture in the scan with no occlusion, and used this position to

compute the confidence and consistency metrics in five situations.

The first row of Figure 4.6 shows digital images of the cat sculpture under the

varying occlusion conditions. The second row shows the LiDAR scans of the occluding

object as well as the cat sculpture to illustrate the scan points that fell on the sculpture.

Table 4.2 summarizes the consistency and confidence measures for the five cases. Fig-

ure 4.6a shows the scene with no occlusion and is provided as a baseline reference.

The consistency is very high, and the confidence is 0.476, a typical value after observ-

ing the object from only one viewpoint. In Figure 4.6b, we scanned the scene through

a net to imitate a scaled down camouflage net. The confidence of the model decreases
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(a) (b) (c) (d) (e)

Figure 4.6: Cat sculpture scans with varying occlusions. (a) No occlusion, (b) Light,
sporadic occlusion (net), (c) Heavy, sporadic occlusion (lace), (d) Heavy, sporadic
occlusion (tablecloth), (e) Heavy, contiguous occlusion (monitor)

by about half, which agrees with our intuition that we only see about half as many

points on the sculpture as we did in the unoccluded scan. However, the consistency

is still very high. In Figure 4.6c, we scanned the scene through a piece of lace fabric

to imitate extremely dense foliage. Again, the consistency value is still very high, but

the confidence has decreased even further, as even fewer points on the sculpture have

now been seen. In Figure 4.6d, we occluded the cat sculpture with a tablecloth. The

results are similar to the lace fabric. Finally, in Figure 4.6e, we occluded the cat with a

monitor. The consistency value is still high, but the confidence value is similar to that

of the “net” case of Figure 4.6b.

Occlusion Confidence Consistency

None 0.476 0.879

Light, sporadic (net) 0.257 0.952

Heavy, sporadic (lace) 0.195 0.958

Heavy, sporadic (tablecloth) 0.083 0.985

Contiguous (monitor) 0.256 0.963

Table 4.2: Experimental values of consistency/confidence for different types of oc-

clusion, cat sculpture.
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4.3.3 Synthetic Cars — Multiple LiDAR Scans

In the next experiment, we demonstrate how additional LiDAR scans of a scene

help improve our knowledge, as well as how the consistency and confidence metrics

can be used to disambiguate similar objects. We considered a database of five synthetic

automobile models, each with its center of mass at the origin. The models are all at

life-size scale. We simulated sequentially LiDAR scanning each car from four different

perspectives (front, driver side, rear, passenger side). The synthetic scans were created

using custom software that we wrote to simulate the output from the Leica scanner

that we use for real-world scans (see Section 3.1). The input is a scene consisting of

triangulated meshes, a forward direction, spherical angle bounds, and spherical angle

spacing. The output is a point cloud of the visible surfaces in the scene.

In Figure 4.7, the i th row represents that we are hypothesizing the i th model ex-

ists. The j th column represents that we are comparing a hypothesis to synthetic LiDAR

scans of the j th model. For example, in cell i = 2, j = 4, we are hypothesizing the exis-

tence of the sedan2 model and comparing it to LiDAR scans of the SUV.

Each square cell in Figure 4.7 contains an independent coordinate system with

confidence on the horizontal axis and consistency on the vertical axis. The k th point

from the left in each square represents the value of the confidence/consistency after

seeing the first k scans.

Throughout this chapter, for experiments with automobiles we use a mismatch

allowance of 10cm for the consistency calculations, and σ= 0.3cm for the confidence

calculations.
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Figure 4.7: Confidence/Consistency evaluation between all combinations of five au-

tomobile models. Rows: models, columns: LiDAR scans. Each dot (left to right) rep-

resents an additional scan taken from the front, driver side, rear, and passenger side

viewpoints, respectively.

Some noteworthy observations are:

• The consistency is always 1 for squares on the main diagonal. This indicates that

each model’s consistency with itself is 1.

• The confidence increases or remains constant with each additional scan.

• Since it is smaller, the sedan2 model is consistent with the scan of sedan1 (cell

(2,1)), but the sedan1 model is not consistent with the scan of sedan2 (cell (1,2)).
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• Three of the models are smaller than the van. Therefore, they are each consistent

with the scans of the van (cells (1,5), (2,5) and (4,5)). However, the truck is longer

than the van, so the truck model is inconsistent with the scan of the van (cell

(3,5)).

• In cell (3,1), we can see that the front of the truck is inconsistent with sedan1, but

the sharp increase with the second scan indicates that their sides are similar.

By inspecting this table, we see that the two measures behave as we expect, al-

lowing a human to easily interpret the situation based on the two values.

4.3.4 Real Parking Lot Scans

Typical coarse registration algorithms produce several initializations that are re-

fined by an ICP method. Some of these initializations produce high average point-to-

point distances and can quickly be discarded. However, several positions often need to

be manually discarded by the user. Such positions have a low average distance, but are

physically very incorrect. Since a typical ICP cost function value depends on the scale,

sampling density, and parameterization of the problem, it is very difficult to compare

the quality of matches across multiple search objects and scales. Our metrics, however,

are independent of object size and therefore can easily be directly compared. In this

example, we demonstrate how our metrics are much easier to interpret than the ICP

cost function values.

We acquired a LiDAR scan of two cars in a parking lot. Two hypothetical outputs

of a coarse registration algorithm between an Audi A4 model and the scene are shown

in Figures 4.8a and 4.8b (we have repeated the figure from the motivating example in

the beginning of this chapter here for the readers convenience). One is correct, and the

other is incorrect (it lies halfway between the two cars in the scan). Table 4.3 reports

the ICP cost function value, consistency, and confidence for the two positions. We

employed a standard ICP cost function, shown in Equation 4.6.
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Position ICP Cost Function Confidence Consistency

Correct 0.057 0.579 0.589

Incorrect 0.094 0.252 0.077

Table 4.3: Measures for Audi positions in parking lot scan.

ICP Cost Function = 1

N

N∑
i=1

‖R~Xi + t−~Yi‖ (4.6)

Here, Xi is a scene point and Yi is the nearest model point to Xi . Scene points

for which the nearest model point is more than 0.2 meters away were not included in

the ICP cost function, a common technique described in [132]. It is important to note

that regardless of which variant of the ICP cost function is used, the value is always in

meters, in contrast to our metrics which both take unit-less values between 0 and 1.

Also, as the complexity of the selected ICP function increases (e.g., by weighting each

point’s contribution differently), the ability to intuitively interpret the value decreases.

Both positions have comparable average point-to-point distances (the ICP cost

function value), which are both below 10 cm. For our new measures, the correct po-

sition has a high confidence value (given only one viewpoint) as expected, and the

consistency is reasonable, though slightly lower than ideal. This is largely due to the

transparent windshield in the real scene, which causes discrepancies in model fitting

(see [116]). However, in the other position, the extremely low consistency value alone

is grounds to declare this position incorrect. The confidence is non-zero because the

each side of the model aligns with the adjacent side of one vehicle in the scene.

In Figures 4.8c and 4.8d, we show the observed information of the car model

vertices in both positions. In the correct position, the front and driver side points are

green (seen) and the rest are red (unseen). In the incorrect position (between the two

cars), points on both sides of the model are seen, but the rest of the points are unseen.

In Figures 4.8e and 4.8f, we see that in the correct position most of the points are

consistent. The inconsistencies stem from the model not being a perfect match (i.e.,

the model is a 2000 Audi A4 and the scene is a 2009 Audi A4) as well as slight misalign-

ment. In the incorrect position, almost all of the points are inconsistent because the

scanner “saw through" the model to the back wall. This is a typical example of how
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Parking lot demonstration. (a) Model registered to correct position in
scene. (b) Model registered to incorrect position in scene. (c) Model points at cor-
rect position colored by confidence (unseen: red, seen: green). (d) Model points at
incorrect position colored by confidence (unseen: red, seen: green). (e) Scene points
at correct position colored by consistency (inconsistent: red, consistent: green) (e)
Scene points at incorrect position colored by consistency (inconsistent: red, consis-
tent: green).
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the consistency and confidence measures play a useful dual role for understanding if

a hypothesized position makes physical sense.

Figure 4.9 illustrates a second LiDAR scan of three automobiles in a parking lot.

We computed the consistency and confidence measures for an Audi A4 car model po-

sitioned at every 20 cm in the horizontal and vertical directions, assuming the model

is major-axis-aligned with the parking space lines and located on the ground plane.

(a) 3D view (b) Top view

Figure 4.9: Parking lot scene with three cars.

Figure 4.10a shows a “heat map" of consistency values over the scene. We see

that positions in the LiDAR shadow of the automobiles have high consistency. Figure

4.10b shows a heat map of the confidence values over the scene. There are several

false positives. These can occur when significant parts of the model align with the

scene, due to symmetries and the fact that any two near-planar objects tend to look

alike. In Figure 4.10c, we thresholded the consistency map with a value of 0.75 and

the confidence map with a value of 0.3 and boolean ANDed the resulting images. The

position of all three automobiles are clearly verified with no false positives. However,

we believe that considering both measures together leads to better-informed decisions

than combining them into a single scalar value.

4.3.5 Demonstration: Sliding a Window Along a Building

In this demonstration, we will show how our two metrics behave for a model

across different positions in a scene. In Figure 4.11, we show a model of a window.
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(a) (b) (c)

Figure 4.10: Consistency/confidence heat maps. (a) Consistency heat map (b) Con-
fidence heat map (c) Dual thresholded with consistency > 0.75 and confidence > 0.3.

Figure 4.11: A model of a window.

In Figure 4.12, we show two positions of the window model in the building scan.

In Figure 4.12a the window model has several points (red) that are inconsistent with

the scene. In Figure 4.12b the window model has several points (black) which were not

seen in the building scan, so these points do not contribute to collecting information

that we are confident that a window actually exists at this position.

In Figure 4.13, we have slid this model of a window across the facade of a building
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(a) (b)

Figure 4.12: Demonstration of Consistency and Confidence of points on a window.
(a) At this position, the window model has several points (red) that are inconsistent
with the scene. The points shown in green are consistent with the scene. (b) At this
position, the window model has several points (black) which were not seen in the
building scan. The green points indicate points which have a nearby point in the
scan, which contribute positively to our confidence measure.

and overlaid the values of our two metrics. We can see that there are spikes in both

values when the model is at a position that is aligned with a window of the building,

even when the window is mostly occluded.
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Figure 4.13: The Confidence and Consistency measures overlaid as we slide a model

of a window across the face of a building. The blue line indicates the confidence

value, while the green line indicates the consistency value.

In Figure 4.14, we have thresholded our metrics to classify each model point as

”good“ (high consistency and confidence), ”bad“ (inconsistent with the scene at the

current position), and ”uninformative“ (there was no corresponding scene point near

the model point). Again we can see that there are spikes and dips in all of these mea-

sures corresponding to the actual positions of the windows in the scene.
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Figure 4.14: Counts of points on the window model falling into three categories af-

ter thresholding our metrics. ”Good“ points (green) have both high consistency and

confidence. ”Bad“ points (red) are inconsistent with the scene at the current posi-

tion. ”Uninformative“ points (black) have no corresponding scene point near the

model point. We can see that there are spikes and dips in all of these measures cor-

responding to the actual positions of the windows in the scene

4.4 Discussion

In this chapter we presented a dual metric for deciding whether a 3D object exists

at a hypothesized location in a LiDAR scan. A set of such locations produced by any

registration method can be verified using these measures, which together are able to

provide physically meaningful values for a user to interpret. The experiments demon-

strated the feasibility and accuracy of this method.

The consistency calculation currently takes an average of 0.3 seconds for each

position in Figure 4.9 on a Pentium 4, 3GHz computer with 2GB of RAM. This could

be improved by using a lower resolution model (our car model is ≈500,000 triangles).

Typical models used in object detection are not designed with resolution variability in

mind, so applying mesh decimation techniques is non-trivial, as they tend to fail to

maintain the overall structure of the mesh. For this reason we chose to use the high

resolution mesh throughout the experiments. We also could speed up the consistency

calculation by employing a coarse-to-fine strategy. For example, we could evaluate

the consistency using a uniformly downsampled set of the scene points. If the down-
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sampled scene points are inconsistent with the model hypothesis, the probability that

the entire set is also inconsistent is extremely high and further computation can be

avoided. We could also use a depth buffer comparison rather than a ray-wise compar-

ison to tremendously speed up this computation. However, there are several difficul-

ties with this approach. The scan is a point cloud, not a triangulated mesh, so a point

rendering system such as [104] must be employed. The resolution of the rendering

window must be chosen such that there are similar numbers of corresponding pixels

as there are scene points (and thus rays).

Currently, our dual metrics return similar values for a given amount of occlusion

without considering the contiguity of the occlusion. For example, in Figure 4.6, the

“net” occlusion produces almost identical values to the “monitor” occlusion. A possi-

ble solution is to remove the independence assumption on the collection of 1D prob-

lems along each ray, e.g., by using a first order Markov random field. This approach

would favor neighborhoods of scene points that had similar consistencies.

Our consistency calculations assume that multiple registered scans come from

a perfectly static scene. Relaxing this assumption would open up new research ques-

tions. For example, we could determine that an object was present and still for one

scan, and then was either moved or occluded before the next scan was acquired.

Finally, we note that an accurate 3D model is frequently not available for the ob-

jects we might want to locate in the scene. This calls for a non-model based approach,

in which the consistency and confidence for a scan are determined with respect to

several example pictures or scans of a model.



CHAPTER 5

LiDAR Segmentation

In this chapter, we first discuss in detail a popular method for segmenting images

known as graph-cut segmentation. We go on to show that this method can be extended

to allow a user to segment entire objects from a LiDAR scan with only a few mouse

clicks. A two-step algorithm is introduced which operates on a combined color-and-

depth image. It first takes advantage of sharp depth discontinuities present at some

points of an object, and uses this initial result to perform a second segmentation using

the available color information.

5.1 Traditional Image Segmentation

By segmenting an image, we mean that we want to classify each pixel as fore-

ground (F ) or background (B). Graph-cut techniques achieve this goal using two com-

plementary ideas. The first is that the similarity of adjacent pixels should be high in

regions that belong to one class or another. That is, a large group of connected red

pixels will likely all be classified into the same group (F or B). Second, pixels belong-

ing to the foreground or background should fit well to an a-priori description of their

respective regions. This description is typically provided in the form of a probability

distribution, which comes from either a domain-specific database, or is specified by

the user by “scribbling” on the image, a technique which we will explain in the follow-

ing sections.

We motivate the problem in Figure 5.1. Here we have segmented the soldier in

Figure 5.1a from the background, and showed the resulting foreground pixels in Figure

5.1b.

95
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(a) (b)

Figure 5.1: An example image segmentation. (a) An image of a soldier. (b) The sol-

dier has been segmented from the background. (images from [130])

To discuss the graph-cut segmentation problem, we must first introduce some

terminology. A graph G is composed of a set of vertices V and a set of edges E defining

the connectivity of the vertices in V . To represent an image as a graph, we create a

vertex in V for every pixel in the image. These vertices of the graph all lie on a grid in

a plane, arranged in the same formation as the image pixels. Additionally, two special

nodes are added to V , one which we call F for foreground, and the other B for back-

ground. These nodes are often referred to as terminals. The reason for these nodes will

be made clear in the following discussion. In an image, the pixel connectivity is defined

implicitly by the pixels’ location. In a graph however, we must be more explicit. That

is, we add an edge ei j to E between each vertex corresponding to each pixel i and all of

its neighbors j ∈ N (i ). The neighborhood connectivity N (i ) which is typically used is

a 4-connected neighborhood, meaning that a pixel is only considered to be connected

to its north, south, east and west neighbors. This is in contrast to an 8-neighborhood

which also considers diagonal pixels to be connected. These edges are referred to as

n-edges, indicating that they are connecting the standard nodes to each other. Next,

we add edges Ei F and Ei B connecting each pixel i to the foreground and background

terminals F and B . These edges are referred to as t-edges, indicating that they connect

a node to one of the terminal nodes. The resulting graph shown in Figure 5.2.



97

F

B
(a)

F

B
(b)

Figure 5.2: The graph constructed from an image. 5.2a The initial graph. The nodes
corresponding to image pixels are shown as black dots. The n-edges are also shown
in black. The t-edges are colored to match their respective terminals. 5.2b After
the cut (black dashed line) is computed, the edges it severs are removed from the
graph. We see that this leaves us with some nodes (now red) connected to only the
background terminal, and other nodes (now blue) connected to only the foreground
terminal. (Images adapted from [127])

Our goal in segmentation is to remove a subset of the edges of E such that there

is no longer a path from F to B (F and B are disconnected). A cut, c, on the graph

is defined as a set of edges that satisfies this condition. There is a huge set of possi-

ble cuts on this graph, but the segmentation we are looking for is a specific cut that

minimizes an energy function formulated to have the properties we desire in a good

segmentation. In the remainder of this section, we detail the construction of this en-

ergy function.

5.1.1 Edge Weights

Before we can formulate the energy function, we must assign a weight, wi j , to

each edge, ei j . The n-weights and t-weights play very different roles in our graph-cut

segmentation formulation, as shown in the following sections.
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5.1.1.1 N-Weights

In this formulation, the n-weights indicate the similarity between the two ver-

tices connected by the n-edges. That is, wi j is small if vertices i and j are dissimilar

and large otherwise. In graphs on images, the weights on n-edges are typically com-

puted to be some function of the RGB values at the corresponding image pixels. The

weight function often takes the form of a negative exponential of a distance function

between the pixel vectors associated with the nodes, as shown in Equation 5.1.

wi , j = e−d(Ii ,I j ) (5.1)

The distance function d(Ii , I j ) is often the squared norm of the difference be-

tween the RGB vectors at pixels i and j , as shown in Equation 5.2

d(Ii , I j ) = ‖Ii − I j‖2 = (I r
i − I r

j )2 + (I g
i − I g

j )2 + (I b
i − I b

j )2 (5.2)

However, this could easily be replaced by any function of Ii and I j , such as the

difference between these pixels represented in a different color space (such as HSL

[88]), or any other vector distance function such as the L1-norm, for example.

5.1.1.2 T-Weights

To compute the t-edge weights, a probability density function is constructed in-

dicating the likelihood that a pixel belongs to the foreground or to the background.

This function can be computed from two sources. First, a model of the foreground or

background can be learned from a collection of training images of the objects of inter-

est. For example, if we want to segment cars in images, we could collect many images

of cars and manually label the pixels belonging to the cars (and implicitly, the pixels not

belonging to the cars). We can then construct a probability density function from the

entire set of pixels belonging to cars. Alternatively, if no model of the object to segment

is known a-priori, one can be constructed on-the-fly by the user. Typically an inter-

face is provided to allow a user to scribble on the image (shown in Figure 5.3), loosely

indicating some constraints on the problem. The user can very casually mark pixels

in the interior of the object as “definitely foreground”, and far away from the object as
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“definitely background”.

Figure 5.3: An image with user drawn “scribbles” on the foreground (green) and
background (red).

These selected pixels now serve as the model of the foreground and background,

which are again used to produce a probability density function for both regions. A nor-

malized histogram is often used as an estimate of the true probability density function.

For a pixel i , the weights to the foreground and background node can be writ-

ten as shown in Equation 5.3. Note that these are the negative log-likelihoods of the

opposite region.

wi ,F =−λ logPB (Ii ) (5.3)

wi ,B =−λ logPF (Ii ) (5.4)

For example, if PB (Ii ) is very low, then wi ,F will be very high, making it much

more likely that the edge between i and B is cut. Here, λ is a scalar that determines the

relative magnitudes of the t-weights and n-weights. Throughout this thesis, we have

chosen λ= 0.01.

In Figure 5.4 we show the histograms of the pixels selected by the user from Fig-

ure 5.3. In practice, we use a true 3D histogram (RGB), but it is much easier to visualize

the 1D histograms of each color channel as a colored, interlaced histogram.

For pixels indicated by the user to be foreground, the corresponding weight on
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(a) (b)

Figure 5.4: Histograms of the user indicated foreground and background pixels. (a)
The histogram of the foreground scribbles. (b) The histogram of the background
scribbles.

the t-edge connected to B is set to 0, indicating that this edge should be extremely easy

to cut. Conversely, the weight on the t-edge to F is set to infinity (or a very large num-

ber) so that this edge can never be cut. User-marked background pixels are handled

exactly oppositely.

5.1.2 Computing the Minimum Cut

A well known result from graph theory is that given a graph with non-negative

weights, it is possible to find the minimum cut between two nodes, or cut which con-

tains edges with the smallest sum. We call this sum the energy, J , of the cut as shown

in Equation 5.5.

J (c) = ∑
(i , j )∈c

wi , j (5.5)

There is an equivalence between the max-flow on a graph, and the min-cut of a

graph. As graphs are often used to model transportation networks, the problem has

been studied in the context of maximizing throughput from one vertex to another, tak-

ing the edge weights to be the capacity of each edge. Therefore, algorithms to com-

pute these solutions are often known as “Min-cut/Max-flow algorithms.” A famous

algorithm to solve the max-flow on a graph (and therefore the min-cut) is the Ford-

Fulkerson algorithm [70]. However, these solutions can be quite slow on large graphs,

which is the case with our graphs on images (a 1 mega-pixel image has 1 million nodes
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in the graph!) Recently, Boykov and Funka-Lea [23] introduced a method to compute

this cut extremely efficiently, leading researchers to take advantage of this type of graph

formulation extensively [25, 24, 23].

5.1.3 Interactive Refinement

This whole procedure (indicating which pixels belong to the foreground and back-

ground, using them to create models of the corresponding components, and comput-

ing the minimum cut) is often performed in an interactive way. That is, if the segmen-

tation is determined to be incorrect or needs refinement, the foreground and back-

ground scribbles can be improved or extended and the solution recomputed.

(a) (b)

(c) (d)

Figure 5.5: Two steps of an interactive segmentation refinement process. (a) The ini-

tial foreground (green) and background (red) strokes. (b) The resulting initial seg-

mentation. We see that a large region in the top right of the image was erroneously

included in the foreground. (c) The user has refined the segmentation by adding ad-

ditional background strokes. (d) The segmentation using these additional strokes is

much better than the original segmentation.
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5.2 LiDAR Image Segmentation

Our goal in this section is to extend the graph-cut technique described in the

previous section to segment 3D objects from LiDAR scans. That is, we ask the user

to place some simple strokes on foreground and background objects, and use this in-

formation to classify each LiDAR point as either foreground (object) or background.

While it might seem intuitive that simply thresholding the distances from the scanner

should produce good segmentations, we show that this is usually not the case.

5.2.1 Algorithm Overview

An overview of our proposed algorithm is given here, and detailed in the remain-

der of this section. Our algorithm is a two step process. First, we segment the depth

image alone, producing an under-segmentation of the object. We will show that the re-

gion of the object far away from its attachment to the ground is easily segmented in this

procedure, and the difficult region near the ground results in a naturally conservative

segmentation. Next, we use the resulting foreground pixels from this first segmenta-

tion as known foreground pixels to seed a second segmentation, this time using the

color information. Additionally, we propose a method to further constrain the second

segmentation by computing background pixels near the boundary of the object to pre-

vent this segmentation from crossing the object boundary in regions where the object

has been correctly segmented by depth alone. We will show that the resulting compos-

ite segmentation is very accurate, and requires much less, if any, iterative refinement

than using color-only segmentation techniques.

5.2.2 Computing Edge Weights for LiDAR Graphs

To approach the LiDAR segmentation problem using techniques from image seg-

mentation, we must first represent the LiDAR data in a way that can be represented as a

multi-valued function over a graph. We construct a depth image from the LiDAR points

by computing their distance to the scanner’s location, and placing this value in a float-

valued image of the same size as the acquisition grid. (See Section 2.1.3.4 for a detailed

explanation of this process.) Additionally, as described in Section 3.2, our LiDAR image

is accompanied by a registered RGB image so that every scan point has an associated
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color. We append the depth image as a 4th component, or channel, of the color image,

producing a “color + depth” image, which we refer to equivalently as an RGBD image

(indicating the ordering of the channels - red, green, blue, depth). We refer to the i th

pixel in this RGBD image as Ri (where we had previously referred to the i th pixel of a

standard RGB image as Ii ).

5.2.3 Computing N-Weight for LiDAR Pixels

A critical step in the formulation of the graph-cut problem for LiDAR is determin-

ing an appropriate distance function between vertices. By using the sum of squared

differences in Equation 5.2, we are implicitly valuing differences in each color chan-

nel equally. However, it certainly does not make sense to weight differences in the

color and depth values equally, since the values in the depth channel have units in

meters (typically from 10− 20m in the scans in this thesis), while the RGB channels

have arbitrary units, typically in the range 0−255. Performing operations like the sum

of squared differences directly on these 4-component RGBD pixels does not yield a

meaningful result. That is, two pixels that are very similar, say A = (100,200,50,5)

and B = (101,199,48,5.1) have approximately the same difference as pixel A and C =
(100,200,50,9), even though these pixels are very different (their last component indi-

cates that these pixels are 4 meters different in depth from each other). Because of this,

we need some way of adjusting the components so that they lie in meaningful ranges

that can be directly compared.

We extend Equation 5.2 with these new types of images by weighting each chan-

nel with a scalar α, as shown in 5.6.

d(Ri −R j ) =αr (Rr
i −Rr

j )2 +αg (Rg
i −Rg

j )2 +αb(Rb
i −Rb

j )2 +αd (Rd
i −Rd

j )2 (5.6)

where each αc is a scalar weight for channel c of the image. We substitute this new dif-

ference function directly into Equation 5.1 to obtain the n-weights for our new graph.

One method of setting theseα’s is to normalize the channels, a common practice

in statistical data analysis. To normalize the channels, we find the mean and standard

deviation of each of each component over the entire image. Then we subtract the cor-
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responding means and divide by the corresponding standard deviations to obtain val-

ues have 0 mean and unit variance. For example, for the red component, we compute

new values for each pixel as in Equation 5.7.

Rr
i = Rr∗

i −µr

σr
(5.7)

Here, Rr∗
i is the original value of the red component of the i th pixel, µr is the

mean of the red channel of all pixels in the image

µr =
∑

i Rr
i

NR
(5.8)

(NR is the number of pixels in R) andσr is the standard deviation of the red component

of all pixels in the image

σr =
√

1

NR

∑
i

(Rr
i −µr )2 (5.9)

This procedure is applied to each channel separately. The resulting channels of

the image are now directly comparable.

In addition to the usual normalization, we may additionally want to adjust these

channel weights to manually set the relative importance of each channel. In the exper-

iments in this chapter, we simply use equal weights on each channel after the channels

have been normalized. In the best case, we could use machine learning to pick a set

of weights that perform well on the data and problem at hand. However, this would

require significant amounts of hand-labeled training data, so we have chosen not to

require this in our approach.

5.2.4 Problems with Direct LiDAR Segmentation

Color and depth segmentation each come with their own sets of benefits and

drawbacks. In Figure 5.6a, we show the resulting segmentation using both color and

depth information separately, as well as the resulting segmentation using the RGBD

image described in the previous section, with various channel weights. We see in 5.6c

that the color-only segmentation results in significant “bleeding” of the foreground

over the object boundary. We note that this type of error in this region of the object
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should be easily fixed by using the depth information, as the difference in depth of

the object from the background in this region is very large. However, using only the

depth information as in Figure 5.6d, though the color bleeding has been resolved, the

resulting segmentation is a quite conservative estimate of the object. This is because

the depth values near the ground attachment point are very similar inside and outside

the object boundary. In Figure 5.6e we show the result of segmenting the object using

both color and depth information, directly with the normalized channels described in

the previous section. We see that though the segmentation is better than both the color

segmentation or depth segmentation alone, there are still errors. Figure 5.6f shows the

best result we could achieve by tweaking the weights of the channels manually (we

settled upon αd = 5.2αr and all of the color channels weighted equally). While this

result is reasonable, in this section we discuss a technique which does not require this

manual trial-and-error weight setting procedure.

To show that this behavior can not always be achieved by setting the weights to

the same values, we provide a second example of the same segmentations on a differ-

ent data set. In fact, in this case we were unable to find a set of weights which seg-

mented the object appropriately.

In both Figures 5.6d and 5.7d, we see that the resulting segmentation using the

depth information alone is a conservative segmentation, or under-segmentation, of

the object. That is, though we did not label all of the object points as foreground, we

never labeled background points as foreground. The reason for this is shown in Figure

5.8. We can see that for pixels A and B at the top of the object, where the object is far

from the ground and distant from the background, the depth differences are high and

the weight in Equation 5.6 between adjacent foreground and background pixels is low

(easy to cut). On the other hand, for pixels C and D at the bottom of the object, the

depth values are almost identical, so the weights in this region are all very large and

the boundary is difficult to determine correctly.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.6: Color vs depth segmentation. (a) The original scene. (b) The user pro-
vided strokes on the image. (c) The resulting segmentation of the object using color
information only. We see that the top of the electric box “bleeds” into the trees in the
background because the colors are similar. (d) The resulting segmentation of the
object using depth information only. We see that this a conservative estimate of the
object. (e) The resulting segmentation of the object using equal weights on each of
the normalized RGBD channels. The segmentation is improving, taking on proper-
ties from both color and depth segmentation alone. (f ) The resulting segmentation
of the object using equal weights on the RGB channels and αd = 2αr . This is as good
as we can do without further refinement by the user.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Color vs depth segmentation. (a) The original scene. (b) The user pro-
vided strokes on the image. (c) The resulting segmentation of the object using color
information only. We see that only the front face of the top part of the mailbox has
been segmented. (d) The resulting conservative segmentation of the object using
depth information only. While the segmentation looks quite good, we are actually
missing several inches of the bottom of the post. (e) The resulting segmentation of
the object using equal weights on each of the normalized RGBD channels. The seg-
mentation takes on properties from both color and depth segmentation alone. (f )
The resulting segmentation of the object using equal weights on the RGB channels
and αd = 2αr . No combination of channel weights seems to produce a better seg-
mentation.
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Figure 5.8: The depth image of the electric box scene. We see that points A (back-
ground) and B (object) have significantly different depths, making the distinction
easy to determine both for a human and for the algorithm. However, points C (back-
ground) and D (object) have approximately the same depth, making the determina-
tion very difficult.
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5.3 Contribution: Two Step LiDAR Segmentation

In this section we present a novel two step algorithm for segmenting an object

in a LiDAR scan. First, we perform a segmentation on the depth image alone, which

results in an under-segmentation of the object. As we described in the previous sec-

tion, the boundary of the object far away from the ground attachment is easy for the

graph cut to find correctly, but as the depth values converge to the same value as the

ground, the distance function between two pixels near the ground boundary becomes

very small, leading to large edge weights, which the algorithm does not easily cut. To

remedy this, we follow this under-segmentation with a second segmentation step. Our

key contribution is using the result of the initial depth-only segmentation as the fore-

ground seeds for the second segmentation, as we will show in this section. Addition-

ally, we describe a technique to additionally create new background seeds which en-

sure the boundary in the region far from the ground is preserved in the second step. We

show that this two step technique can produce more accurate segmentations of objects

in LiDAR scans than can color-only segmentations, depth-only segmentations alone,

or even combined RGBD segmentations. Additionally, little to no user refinement is

necessary using our technique.

5.3.1 Step 1: Depth-only Segmentation

We motivate our approach with a simple real-world example. Consider the scene

shown in Figure 5.9. After the user marks foreground and background with simple

strokes, using a depth-only segmentation produces the result in Figure 5.9b.

5.3.2 Step 2: Refining the LiDAR Segmentation Using Color Information

The result of the depth-only segmentation have given us a much larger set of

“definitely foreground” pixels than those provided by the user’s strokes. We take ad-

vantage of this new knowledge by using these pixels as the initialization of a second

segmentation. This time, we directly use the normalized RGBD channels each with

unit weight rather than requiring the user to interactively determine weights which

produce a good result, as would be required with the sparse initial knowledge alone.

The effective result is as if the user, rather than scribbling very casually, had instead
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(a) (b)

Figure 5.9: An example initial depth segmentation. (a) The user specified fore-
ground and background pixels in the form of rough strokes. (b) The resulting seg-
mentation using depth information only.

painstakingly very carefully filled in a large piece of the object at a pixel by pixel level.

This step of the procedure is shown in Figure 5.10.

Figure 5.10: The new foreground pixels resulting from the depth segmentation.

5.3.2.1 Background Pixel Inference

If we simply use the foreground pixels from the first step (depth-only segmenta-

tion), there is nothing preventing the exact same color bleeding that we observed in a

color-only segmentation. In Figure 5.11, we show this effect.
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Figure 5.11: Even with the foreground pixels from the depth-only segmentation, us-

ing the color information results in bleeding over the edges that were correctly ob-

tained in the depth-only segmentation.

We must indicate the region where we are confident that the depth segmenta-

tion was correct, as the depth provides enormous information about the outline of the

object. To constrain the graph cut, we must add additional constraints in the form of

new “definitely background” pixels. Our goal is to allow the color segmentation to be

used only where the depth segmentation is uncertain. To determine the confident pix-

els, we propose the following procedure. By dilating the region that we have marked as

foreground in the initial depth segmentation step and then extracting its boundary, we

obtain a set of pixels some of which are background pixels immediately outside the ob-

ject, while others should be part of the foreground. The boundary of the dilated region

is shown in Figure 5.12.

Figure 5.12: Boundary of initial depth segmentation foreground.
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To identify which of these pixels are actually background pixels, we perform a

test at every proposed background pixel. We compute the depth difference from each

proposed background pixel to its neighboring foreground pixels. If the average depth

is above a threshold, Dmax , we are confident that the pixel is a background pixel. If the

depth difference is not larger than the threshold, the pixel is discarded and not marked

as a background seed. The resulting background pixels are shown in Figure 5.13.

Figure 5.13: Background pixels marked after background inference.

We have heuristically set Dmax = .03m. This value indicates that we believe if a

pixel differs in depth from its neighbors by less than this value, it is part of the same

object. Of course we cannot apply this idea directly to produce a segmentation — it

only applies to pixels on the boundary of our initial depth segmentation. As the lowest

values we have observed between the depth of a pixel in the foreground of our initial

depth segmentation and its neighboring background pixels is .4m., this is a very safe

choice, and not at all a sensitive parameter.

5.4 Experiments

In this section, we apply our proposed segmentation algorithm to several real-

world data sets. In each example we show, the minimalistic user strokes, the result of

the depth-only segmentation, the new seed pixels (foreground and background), and

the final segmentation in 2D and 3D.

Figure 5.14 shows our algorithm applied to segment the large electric box from
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the electric box data set. We see that the resulting segmentation is very sharp and has

accurately separated the object from the background.

Figure 5.15 shows our algorithm applied to segment the mailbox from the scene.

This is a very challenging color segmentation problem as the background (garage door

and building siding) is very similar in color to the object. We see that even though the

user stroke was only on the large top portion of the mailbox, most of the post was still

labeled object in the initial depth segmentation. Our algorithm, without additional

stroke refinement by the user, was able to accurately label the remaining portion of the

mailbox post as foreground.

Figure 5.16 shows our algorithm applied to segment the trashcan from the scene.

This data set is very challenging for a color-only segmentation algorithm as the black

wheel is almost indiscernible from the shadow cast by the trashcan. We see that the

depth-only segmentation was, as usual, able to accurately segment the top portion

of the object. The second segmentation in our procedure was able to separate the

bottom of the trashcan from the difficult shadow in the background. We note that a

small group of points on the concrete were included in the foreground. As these points

are very similar in both color and depth, it is hard for the algorithm to identify them as

background.

Figure 5.17 shows our algorithm applied to segment the small electric box from

the electric box data set. Overall, the result is quite reasonable, but we note two issues.

First, there are some grass pixels around the sides of the electric box that have been in-

correctly labeled as foreground. This is not an issue with the segmentation procedure,

but rather the input data alignment (the recoloring procedure we described in Section

3.2). Additionally, we see that several pixels in the grass in front of the object have been

incorrectly labeled as foreground. We attribute this to the noisy-ness of both the depth

and color values in highly textured regions such as grass. The effect is not intrusive

when viewed in 2D, but in the resulting 3D segmentation the error is more visible.
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(a) The initial image (RGBD). (b) The initial strokes on the large electric box.

(c) The seeds computed from the depth-only seg-
mentation.

(d) Our segmentation of the large electric box (2D).

(e) The 3D scene. (f) Our segmentation of the large electric box (3D).

Figure 5.14: The final segmenting of an electric box.
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(a) The initial image (RGBD). (b) The initial strokes on the mailbox.

(c) The seed pixels computed from the first segmen-
tation.

(d) Our segmentation of the mailbox (2D).

(e) The 3D scene. (f) Our segmentation of the mailbox (3D).

Figure 5.15: Our LiDAR segmentation algorithm on the mailbox dataset.
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(a) The initial image (RGBD). (b) The initial strokes on the trashcan.

(c) The seeds computed from the initial segmenta-
tion.

(d) Our segmentation of the trashcan in 2D.

(e) The 3D scene. (f) Our segmentation of the trashcan in 3D.

Figure 5.16: Our LiDAR segmentation algorithm on the trashcan data set.
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(a) The initial image (RGBD). (b) The initial strokes on the small electric box.

(c) The computed seeds from the depth-only seg-
mentation.

(d) Our segmentation of the small electric box (2D).

(e) The 3D scene. (f) Our segmentation of the small electric box (3D).

Figure 5.17: The final segmenting of an electric box.
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5.5 Discussion

In this chapter, we have presented a novel two-step algorithm for segmenting

objects in a LiDAR scan. We have presented several successful segmentations of real-

world objects in challenging outdoor scenes. We have showed that minimal user stroking

is required to achieve accurate boundaries in both depth and color. The resulting seg-

mentation in 3D accurately portray the objects, and could serve as excellent input to

the next step in the pipeline of an object recognition system, or object model database.



CHAPTER 6

LiDAR Inpainting

There has recently been a lot of work on the image inpainting problem in standard

RGB images. The user indicates a region in an image, and an algorithm is applied to

automatically fill in the region with plausible background texture. Image editing tools

like Photoshop now routinely include methods to seamlessly remove objects from an

image, as well as repair artifacts. An example of the goal of image inpainting is shown

in Figure 6.1. The goal in this example is to remove the window frame from the image.

(a) (b) (c)

Figure 6.1: A demonstration of image inpainting. (a) The original image. (b) The
region to inpaint is shown in bright green. The goal in this example is to remove
the window frame from the image. (c) The inpainted image. If an observer was pre-
sented with only this image, they would likely not notice that it had been modified.
(Images from [127])

In this chapter, we introduce an algorithm to “complete” LiDAR images by filling

large holes, that might be created by occluded regions or the removal of segmented

objects as described in the previous chapter. As a contrast to image inpainting, an in-

painted LiDAR scan can be viewed from a different perspective, exposing background

texture not present in the original scan. To motivate the goal of this chapter, we show

a example result of our algorithm in Figure 6.2.

119
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(a) (b)

Figure 6.2: A demonstration of LiDAR inpainting. (a) A 3D scene of a mailbox with

a building in the background. (b) The mailbox has been removed and the scene be-

hind it has been filled using our proposed LiDAR inpainting algorithm.

Our work draws from and extends research from two fields; patch-based image

inpainting and image reconstruction from gradients. As in the previous chapter, we

find that image-based techniques cannot be directly applied to work with LiDAR data.

In this chapter, we propose new techniques to fill large holes in LiDAR data. We first

detail the image-based methods which we build upon, then introduce our new algo-

rithm and show several real-world examples of successful filling texture and structure

in LiDAR scans.

6.1 Patch-Based Image Inpainting

Patch-based image inpainting is the process of filling a hole in an image by copy-

ing patches of pixels from elsewhere of the image into the hole. One iteration of this

type of algorithm is shown in Figure 6.3.

Before proceeding, we must define some terms. The hole, Ω, is the portion of

the image, I , that we wish to fill. The boundary of this hole we denote ∂Ω. The source

region, S, is the portion of the image which is known (is not part of the hole) at the

beginning of the procedure, or has been already filled. A target patch,ψT , is any patch

whose center is on the hole boundary. We denote the target patch centered at pixel i by
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Ψ
T

ΨS

Ω
(a)

Ω

ΨT

ΨS

(b)

Figure 6.3: A conceptual demonstration of patch-based inpainting. (a) Image to be
filled and potential source patches. (b) The target patch properly filled.

ψi
T . A source patch, ψS is a patch entirely composed of pixels from the source region.

Again, the source patch centered at pixel i is denoted ψi
S . The size of the patches must

be specified by the user. Typically we specify a “half-width”, h rather than the side

length because this guarantees the patches to have odd size, which ensures they have

a well defined center pixel, which is important because our definition of a target patch

is defined by its center pixel. The patch side length l is simply l = 2h +1. These terms

are illustrated in Figure 6.5.

Target patches have two distinct regions. The region that overlaps the hole we

call the hole region,ψT ∩Ω. The region that overlaps the source region we call the valid

region, ψT ∩S. Although source patches have only one region (all pixels are “valid”, in

that there are no missing pixels due to the hole), when performing a comparison be-

tween a source and target patch, we address regions of the source patch corresponding

to the regions of the target patch. For example, we can refer to the “hole region of the

source patch”, which indicates the region of the source patch that corresponds to the

hole region of the target patch. As this terminology is used extensively, we have labeled

these regions in Figure 6.5.
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Ω

ΨT

Ψs

∂Ω

Figure 6.4: Important terminology for patch-based inpainting. The hole to be in-
painted, Ω, is shown in white. A target patch ψT , is shown in dark blue. A source
patchψS , is shown in green.

(a) (b)

Figure 6.5: Important regions for patch-based inpainting. (a) The target patch from

Figure 6.4 with its regions outlined. The hole region is outlined in red, while the valid

region is outlined in yellow. The hole boundary is indicated with a purple line. (b)

The source patch from Figure 6.4 with its regions corresponding to the target patch’s

regions outlined. The valid region of the source patch is outlined in yellow, while the

hole region is outlined in red. The hole boundary is indicated with a dashed purple

line to remind us that this boundary does not actually exist in the image, but rather

divides the patch in the same fashion as the hole boundary divides the target patch.
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Additionally, to ease the notation, when we refer toψT (q) andψS(q) in the same

equation, q refers to a specific corresponding pixel in the target and source patches.

This is shown in Figure 6.6.

Ψs ΨT
Figure 6.6: Corresponding pixels in a source and target patch. The red square indi-
cates a pixel in the same position relative to its patch in both patches. The two red
pixels are corresponding pixels in the two patches.

A typical patch-based inpainting algorithm proceeds as follows:

1. Determine which target patch fill.

2. Search for the “best” source patch to use to fill the selected target patch.

3. Copy the region of the source patch corresponding to the hole region of the the

target patch into the target patch.

4. Update the hole, the hole boundary, and potentially add new source patches.

5. Repeat until the target region contains no pixels.

The two most important steps in this algorithm are choosing which target patch

to fill and deciding which source patch to copy into the chosen target patch. We dis-

cuss the details of these steps in the following sections. Particularly, we discuss the

technique described in a seminal work by Criminisi [37].
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6.1.1 Selecting a Target Patch

Since most patch-based inpainting methods are greedy, selecting a good order in

which to fill the hole is very important. There has been a lot of effort dedicated to de-

termining a good order in which to fill target patches. In a seminal paper, Criminisi [37]

noted the importance of filling patches that continue linear structures first. Their ar-

gument was that these linear structures are critical to successful human interpretation

of the resulting image. If the linear structures are broken, it is almost always obvious

that the image has been modified. Other researchers have gone as far as to allow the

user to draw lines to force inpainting to first proceed along these regions (i.e. [146]). In

this chapter, we do not require any such user guidance.

Criminisi described two separate ideas to be applied simultaneously to deter-

mine the priority of a patch. First, filling patches at the hole boundary is significantly

easier than filling patches deep within the hole. That is, we have some context in the

form of known pixels at target patches on the boundary. Furthermore, as the hole starts

to be filled, we should have a high confidence (the term used by [37] to describe this

phenomenon) that the pixels in the known region that were known at the outset of the

algorithm are correct, and then gradually have less confidence in pixels that have been

filled by the algorithm. Second, as continuing linear structures is critical, we should

prefer to fill target patches that contain linear structures in the image. This part of the

priority computation is known as the data term, as it is based on actual pixel values in

the image, as we will see in this section.

At each iteration of the inpainting algorithm, a priority value, P (ψi
T ), is computed

for each target patch. We then select and fill the target patch with the highest priority.

This is expressed mathematically in Equation 6.1.

ψT = argmax
i∈∂Ω

P (ψi
T ) (6.1)

The first idea described in [37] is to compute the confidence of a particular target

patch. We think of the confidence of a target patch as a measure of the amount of

reliable information contained in the patch. To compute the confidence value for each

target patch, we use Equation 6.2.
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C (ψT ) =
∑

q∈ψT ∩S C (q)

|ψT |
(6.2)

where |ψT | is the area (number of pixel) of the target patch. That is, the con-

fidence of a target patch ψT is equal to the sum of the confidence of the pixels in

its source region divided by the area of the patch. This naturally gives preference to

patches with have a large source region, as well as those which are surrounded by

highly confident pixels. Of course, since this is a recursive definition (the priority of

a patch depends on the priority of each pixel in the patch), we must initialize the con-

fidence values of each pixel prior to beginning the inpainting. We do this by setting the

confidence of pixels outside of the hole to 1 (fully confident) and the confidence of pix-

els inside of the hole to 0 (completely unsure). In Figure 6.7, we show the confidence

values of the hole pixels throughout the inpainting process.

(a) (b) (c) (d)

Figure 6.7: The confidence map as patches are filled. (a) An image with a hole to be

inpainted shown in bright green. (b) The confidence of pixels after the first patch is

filled is indicated by their brightness. White indicates the known region, while black

indicates the hole. We see that since the patch that has been filled was surrounded

by approximately half known pixels (confidence = 1) and half unknown pixels (con-

fidence = 0) that its confidence is an intermediate value, near 0.5. (c) The confidence

map after 70 iterations. (d) The confidence map at the end of the inpainting. We see

that the confidence gets lower as we move towards the center of the hole.

Figure 6.7 was generated by using the confidence value alone as the filling prior-

ity. We show the resulting ordering in Figure 6.8.
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(a) (b)

Figure 6.8: An example of the fill ordering produced by the confidence approach.

(a) The image to be filled. The region to be filled is shown in bright green. (b) The

order that the patches were filled is indicated by increasing brightness. We see that

the patches are filled near the original hole boundary first before moving inward

toward the center of the hole.

The second idea popularized in [37] is filling target patches containing linear

structures first. To describe this procedure, we must introduce two new ideas. First,

we denote the normal vector (the vector orthogonal to the tangent vector) of the hole

boundary ∂Ω at pixel p as np . Second, we define the isophote directions in an image

as the gradient vectors rotated by 90 degrees. These isophote directions indicating the

direction of least increase rather than greatest increase, which is exactly the definition

of the direction of a linear structure. We denote the isophote direction at a point p as

∇I⊥p . A boundary normal and isophote direction are shown for a target patch centered

at a pixel p in Figure 6.9.

Figure 6.9: The isophote direction and the boundary normal at a point. (Figure from

[36]).
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To encourage patches containing these linear structures to be selected first, [37]

introduced a data term which has higher values for target patches that lie on these

linear structures, and where their isophote direction is aligned with the hole boundary

normal direction. This condition is expressed in Figure 6.3.

D(ψi
T ) = |∇I⊥i ·np |

255
(6.3)

In [37], the final priority of each target patch was simply taken to be the product

of the confidence and data terms, as in Equation 6.4.

P (ψT ) =C (ψT )D(ψT ) (6.4)

We note that in this formulation, the normalization term of 255 in the data term

is actually unnecessary. Recall from Equation 6.1 that we will only use this priority

function to as an objective function to be maximized. Substituting our priority func-

tion into 6.1 we obtain

ψT = argmax
i∈∂Ω

∑
q∈ψT ∩S C (q)

|ψT |
|∇I⊥i ·np |

255
(6.5)

the solution to which is identical to that of

ψT = argmax
i∈∂Ω

∑
q∈ψT ∩S C (q)

|ψT |
|∇I⊥i ·np | (6.6)

Figure 6.10 shows the fill order using the priority term including both the confi-

dence and isophote direction contributions.

In real-world images with natural textures, the isophote directions are extremely

noisy. Therefore they do not always present as strong as we would expect in some re-

gions, and the fill order is not as predictable as we would like. For example, we would

like to think that the boundary between the grass and the brick wall in this example

would have very strong isophotes, but in fact the strongest isophote directions are

those produced by the harsh shadows between rows of bricks, as well as those sim-

ply due to areas of high texture in the grass. Even at different scales (blurring the image

before computing the isophote directions, the result is not what we would hope. Figure
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(a) (b) (c)

Figure 6.10: An example of the fill ordering produced by the joint confidence and
isophote direction preference ordering. (a) The original image with the image to
be inpainted shown in bright green. (b) The magnitude of the isophote directions
(blue is weak, red is strong). (c) The order that the patches were filled is indicated by
increasing brightness. We see that unlike with the confidence term only, patches are
not necessarily filled in a strict outside-in fashion where the isophote magnitudes
are strong enough to give preference to the linear structures.

6.11 shows the magnitude of the isophotes for the original image and a blurred version

of the image.

(a) (b)

Figure 6.11: An example of the effect of scale on the isophote magnitudes. (a) The
isophote magnitudes computed from the original image. (b) The isophote magni-
tudes of a blurred version of the image.

Finally, we note that care must be taken when computing the gradient (and there-

fore isophote directions) of an image near a hole. In a standard image processing prob-

lem, the gradient of an image is computed by convolving edge detecting filters with

the image. However, if we naively compute the gradient of an image with a hole in this
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fashion, the gradient values computed at the hole boundary are undefined, as they rely

on unknown values. These undefined values are problematic, as we need the isophote

directions exactly at the hole boundary to compute the data term shown below. To ad-

dress this issue, we immediately dilate the inpainting mask specified by the user. This

allows us to compute the isophote directions in the typical fashion, as the input image

is well defined everywhere we need it to be to accurately compute the gradient at this

new hole boundary. In doing this we have made the problem slightly harder by making

the hole slightly bigger, but in practice this is not problematic.

6.1.2 Finding the Best Source Patch

Once a target patch is selected, we must find the “best” source patch to copy

into its location. To do this, we must formulate a patch difference function, D(ψT ,ψS),

and minimize this function over all source patches available in the image, as shown in

Equation 6.7.

ψbest
S = arg min

i∈I−Ω
D(ψT ,ψi

S) (6.7)

To compute the difference between a source patch and a target patch, the most

common technique is to compute the sum of squared differences of colors at corre-

sponding valid pixels, as shown in Equation 6.8.

SSD(ψT ,ψS) = ∑
q∈ψT ∩(I−Ω)

(
ψT (q)−ψS(q)

)2 (6.8)

This patch comparison function is very popular because of its simplicity and ef-

ficiency, allowing a very large number of source patches to be evaluated quickly. While

this is the patch comparison function we use throughout this chapter, we discuss in

detail in Chapter 7 why this does not always produce accurate matches.

6.1.3 Patch-Based Inpainting Example

Figure 6.12 shows an inpainting example on a real image. This result shows the

typical quality of inpainting that the algorithm produces. This example took about 30

seconds on a Pentium 4 3GHz processor with a 206x308 image and a patch radius equal



130

to 5.

(a) (b)

Figure 6.12: Realistic demonstration of exemplar-based inpainting. (a) Image to be

filled. The region to inpaint is shown in bright green. (b) The result of the inpainting.

Notice that although the resulting image looks feasible on its own, when we look

at Figure 6.12a, the completion we would expect has the shoreline completed much

more directly. We show the implications of this problem for our work to inpaint holes

in LiDAR data in Section 6.6.

6.2 Reconstructing an Image from its Gradients

There has been much recent research interest in gradient-domain techniques for

image processing. Pérez et al. [124] applied gradient-domain techniques to convinc-

ingly copy large regions of one image into an entirely different image. Bhat et al. [18]

presented a generalized framework for gradient-domain image filtering that can pro-

duce several types of manipulated images. Such techniques rely on the problem of

reconstructing an image from its gradients, which we summarize below.

We begin with an intensity image I (x, y), a target regionΩ inside the image, and

the desired gradients Gx(x, y) and Gy (x, y) insideΩ. We wish to reconstruct new inten-

sities I∗(x, y) insideΩ subject to the constraint that I and I∗ agree on the hole bound-

ary ∂Ω. That is, we want to solve
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min
I∗(x,y)∈Ω

Ï
Ω

(I∗x (x, y)−Gx(x, y))2 + (I∗y (x, y)−Gy (x, y))2 d x d y

s.t . I∗(x, y)|∂Ω = I (x, y)|∂Ω
(6.9)

Using the Euler-Lagrange equation from variational calculus, it can be shown

that the solution to Equation 6.9 satisfies Equation 6.10 below:

∇2I∗(x, y) = div (Gx(x, y),Gy (x, y)) ∀(x, y) ∈Ω
s.t . I∗(x, y)|∂Ω = I (x, y)|∂Ω (6.10)

where∇2 represents the image’s Laplacian and div is the divergence of a 2D vector field.

We discuss the solution to a discretized version of this equation in Section 6.4, which

results in a simple system of linear equations. The approach is applied to color images

by processing each channel independently.

6.3 A Framework for Depth Inpainting

In this section, we discuss an extension to patch-based inpainting to fill holes in

depth images. We show why filling holes directly in the depth image is not appropriate,

and propose a solution to these problems in Section 6.4.

Modern LiDAR scanners typically produce a grid of colored 3D points. That is,

at each point, we know the depth (i.e., distance) from the scanner, as well as an RGB

value associated with the point (usually obtained by a collocated camera). We can view

the resulting dataset as a 4-channel RGBD image (Red, Green, Blue, Depth) over a 2D

pixel grid. As a first attempt at inpainting holes in this type of data, we could simply ex-

tend the technique described in Section 6.1 to operate on these RGBD images. In this

case,ΨS andΨT are patches of 4D vectors defined over the 2D domain (x, y). The dis-

tance function d(ΨS ,ΨT ) in Equation 6.7 is defined as the sum of squared differences

of corresponding RGBD vectors at non-hole pixels. Before comparison, we normalize

the channels in each RGBD image so that the standard deviations of the RGB chan-

nels sum to the standard deviation of the depth channel, using the same technique
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discussed in Section 5.2.3.

Patch-based image inpainting relies on the idea that a patch that “looks like” the

one we would expect to appear in the hole exists somewhere else in the image. In many

RGB images, this is indeed the case. However, in depth images, this is typically not the

case. For example, consider Figure 6.13, in which a hole interrupts a planar surface

seen from above. Though several patches with the correct structure are available, no

source patch exists that has the correct depth value at the interior of the hole.

LiDAR Scanner

Hole

Figure 6.13: An illustration of why direct depth inpainting fails. We wish to fill the
hole (yellow) by copying an existing depth patch to the location of the blue patch.
Unfortunately, the closest patches in the depth image, though having the structure
we need, do not occur at the appropriate depth. Using the green patch would result
in 3D structure in front of the appropriate location (the green dashed patch), and
using the red patch would result in 3D structure behind the appropriate location
(the red dashed patch).

An example of this problem in a real data set is shown in Figure 6.14. We see that

many of the patches that were copied were actually located at incorrect depths.

Another approach one might investigate is inpainting the RGB values as usual

and then finding the smoothest possible depths to fill the hole. While this may work

on very small holes or holes that appear in planar surfaces, in Figure 6.15 we show that

the result is usually unacceptable for large holes with complex backgrounds. In Figure
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(a) (b)

(c) (d)

Figure 6.14: A demonstration of the result of directly inpainting a depth image. (a)
The image associated with the original LiDAR scan. (b) The region to inpaint is indi-
cated in bright green. (c) The structure after inpainting directly in the RGBD image.
(d) A side view showing many patches at incorrect depths.

6.15b the hole in the depth image has been smoothly filled, resulting in very incorrect

3D structure, shown in Figure 6.15d.
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(a) (b)

(c) (d)

Figure 6.15: A demonstration of smoothly filling a hole in the depth image. (a) The
depth image corresponding to Figure 6.14a (blue = close to the scanner, red = far
from the scanner). (b) The resulting depth image after removing the trashcan and
filling the hole with a smooth surface. We note that the sharp edge at the boundary
between the wall and the ground is not preserved. (c) The resulting 3D structure.
(d) A side view of the 3D structure. It is clear that this result is unacceptable, since a
surface that does not make sense in the scene has been created.

6.4 Inpainting 3D Structure Using Depth Gradients

To prevent the problem of copying depth patches which have very similar struc-

ture but different absolute depth values, we instead work in the depth image gradient

domain. We observe that depth patches with the correct structure to complete the hole
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are typically available in the known region of the image.

Similar to the RGBD images discussed in Section 6.3, we now construct a 5-

channel image consisting of the RGB values, as well as the x and y components of the

depth image gradient Dx(x, y) and D y (x, y). We normalize the channels of this image

so that the sum of the standard deviations of the R, G, and B channels equals the sum

of the standard deviations of the Dx and D y channels.

We perform the inpainting procedure in these 5-channel RGBDxD y images, where

the patch distance function now operates on 5D vectors defined over the 2D pixel do-

main. After inpainting the hole by cutting and pasting patches, we can color the new

scene points directly using the first three channels of the resulting patches. However,

an additional step is now required to obtain the depth values for the new points.

We have the desired depth gradient (Dx(x, y),D y (x, y)) inside the hole, but what

we need is the actual depth in the hole, D(x, y). To perform this reconstruction of

the depth image from its gradients, we apply the techniques described in Section 6.2.

Here, Gx(x, y) and Gy (x, y) in Equation 6.9 are exactly our inpainted depth image gra-

dients. We know the depth values immediately outside of the hole, so these serve as

the boundary condition for the reconstruction problem. The system of equations that

must be solved for D∗(x, y), the reconstructed depth image, is shown in Equation 6.11.

∇2D∗(x, y) =∂Dx

∂x
(x, y)+ ∂D y

∂y
(x, y) ∀(x, y) ∈Ω

s.t . D∗(x, y)|∂Ω = D(x, y)|∂Ω (6.11)

Explicitly, a pixel whose 4-neighbors are fully inside the hole generates Equation

6.12.

D∗(x +1, y)+D∗(x −1, y)+D∗(x, y +1)+D∗(x, y −1)−4D∗(x, y) = ∂Gx(x, y)

∂x
+ ∂Gy (x, y)

∂y

(6.12)

A pixel that has at least one 4-neighbor outside the hole generates an equation similar

to Equation 6.13, which shows the case where the pixel (x +1, y) is outside the hole:
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D∗(x −1, y)+D∗(x, y +1)+D∗(x, y −1)−4D∗(x, y) = ∂Gx(x, y)

∂x
+ ∂Gy (x, y)

∂y
−D(x +1, y)

(6.13)

Thus, if there are N pixels in the whole, Equations 6.12-6.13 can be written as a

matrix equation Ad = b, where A is a known N ×N matrix, b is a known N ×1 vector,

and d is an unknown N × 1 vector containing the depths to be determined. Since A

is extremely sparse, containing 5 or less non-zero entries per row, this system can be

solved very efficiently, even for large N .

Once we have solved for the depths in the hole, we construct the new 3D points

by placing points along the original LiDAR rays at the distances prescribed by the new

depth image. We describe the entire procedure algorithmically in Algorithm 1.

Algorithm 1 FillLargeHoles(LiDAR scan)
Construct the RGBDxD y image from the source data
Normalize the RGBDxD y image
Inpaint the RGBDxD y image:
while Hole pixels remain do

Tar g etPatch ← Sel ectTar g etPatch()
Sour cePatch ← F i nd M atch(Tar g etPatch)
Copy SourcePatch into TargetPatch
Update the hole and hole boundary

end while
Extract the inpainted Dx and D y inside the hole
Reconstruct the hole depths D∗ by solving Equations 6.12-6.13
Create the new 3D points at the prescribed depths along the original LiDAR rays

6.5 Experiments

In this section, we demonstrate our algorithm on several real-world data sets.

The results are convincing, even with complicated backgrounds. The resulting hole

completions we obtain appear as if the points had been acquired by the actual LiDAR

scanner, making the completions look very natural.

In Figure 6.16, we demonstrate our algorithm on a LiDAR scan of a trashcan in

front of a brick wall. The hole left by the removal of the trashcan spans three textures
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including concrete, grass, and brick. The algorithm is able to successfully fill this large

hole with convincing color and structure.

(a) (b) (c)

Figure 6.16: (a) A LiDAR scan of a trashcan in front of a background consisting of
concrete, grass, and a brick wall. (b) The inpainted 3D structure behind the trash-
can. (c) A composite of the trashcan with the structure behind it.

Figure 6.17(a)-(b) shows the depth gradient image before and after inpainting.

The inpainted gradient image looks like the gradient field we would expect if the trash-

can had not been present in the scene. Figure 6.17(c)-(d) shows the depth image before

and after reconstruction from the inpainted depth gradient image, indicating that the

results are realistic.

In Figure 6.18, we demonstrate the algorithm with a less regular background.

In this LiDAR scan, several electrical boxes are present in a grassy field, with a very

complicated background of bushes and trees. Again, we show that the algorithm was

able to fill in convincing color and structure in both the smooth ground region as well

as the noisy region of trees.

In Figure 6.19, we show a LiDAR scan of a mailbox with a building in the back-

ground. The mailbox occludes multiple linear structures, and a harsh shadow is present

on the building. Despite these challenges, the algorithm is able to produce a satisfying

result.

A summary of the data sets shown throughout this paper, including image size,

hole size, and timing of the entire LiDAR inpainting process, is provided in Table 6.1.

The experiments were performed on a computer with an Intel Core 2 Duo 3 GHz CPU.

About 75% of the time is spent in the inpainting process, while the remaining
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(a) (b)

(c) (d)

Figure 6.17: A demonstration of our depth gradient inpainting approach. (a) The
magnitude of the original gradient (blue = low gradient magnitude, red = high gradi-
ent magnitude). (b) The magnitude of the inpainted depth gradient. (c) The original
depth image (blue = close to the scanner, red = far from the scanner). (d) The depth
image reconstructed from the inpainted depth gradient. We note that the structure
of the corner between the wall and the ground was successfully preserved.

time is spent reconstructing the depth image from its gradients.
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(a) (b) (c)

Figure 6.18: (a) A LiDAR scan of several electric boxes in a grassy field, with a com-
plex background consisting of bushes and trees. (b) The inpainted scene structure
behind the electric boxes. (c) A composite of the electric boxes with the inpainted
scene behind them.

(a) (b) (c)

Figure 6.19: (a) A LiDAR scan of a mailbox with a building in the background. The
LiDAR shadow interrupts multiple linear structures in the background. (b) The in-
painted scene structure in the LiDAR shadow. (c) A composite of the mailbox with
the background filled behind it.

Table 6.1: A summary of the data sets shown throughout this paper.

Data set Image size Hole size (pix) Total time
Mailbox 459 × 489 30171 1m5s

Electric boxes 688 × 478 45434 2m19s
Trashcan 572 × 517 42734 1m59s

Air conditioners 400 × 496 13709 23s
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6.6 Discussion

We presented an algorithm to fill large holes in LiDAR data. We inpaint the data

in the depth gradient domain, then reconstruct geometry in the original scanner coor-

dinate system. The experiments demonstrate that the method can plausibly fill large

holes, making the data easily viewable from multiple viewpoints without perceptual

artifacts.

We note that our LiDAR inpainting technique is more sensitive to poor patch

choices than a standard image inpainting problem. For example, in Figure 6.20 we

show a case where the image completion would have been deemed perfectly accept-

able, but the resulting 3D structure exhibits strange behavior.

(a) (b) (c)

Figure 6.20: A demonstration of sensitivity to error in the inpainting. (a) An image of
the inpainted colors of a scene. The red rectangle indicates a region in which a small
error has occurred in the inpainting. (b) A zoomed-in version of the red rectangle
from (a), showing that several rows of pixels were filled with grass when they should
have been filled with brick to correctly continue the wall/ground boundary. (c) A 3D
view of the resulting error in the reconstructed LiDAR points.

In this case, the pixels of grass above the yellow line in Figure 6.20b should have

actually been filled with brick. In the image alone, the human visual system can hardly

perceive this error. However, in the reconstructed 3D scene, the error manifests as a

warp in the wall.

Also, as with image inpainting, there are cases where we cannot expect the algo-

rithm to compute a reasonable completion. For example, Figure 6.21 shows a LiDAR

scan of a corner of a building, with air conditioning units on the ground. When we

attempt to inpaint these air conditioners, we have to construct the intersection of two
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walls and the ground that does not appear elsewhere in the scene. The way that these

multiple linear structures should be joined inside the hole is ambiguous. This problem

might be mitigated by allowing the user to draw guidelines inside the hole to indicate

the way linear structures should be merged, as in [146]. Another potential difficulty is

having very limited structure to either side of the hole, so patches are repeated multi-

ple times. For example, in Figure 6.21b we can see that there is only a very small piece

of the image to the left of the hole at the wall/ground boundary. The results in many

of these hard cases could potentially be improved by substituting the greedy inpaint-

ing algorithm we used here with a globally optimal technique (e.g. [96]), at the cost of

slower performance.

Finally, we could apply a similar technique to achieve a different goal. Rather

than filling large holes in LiDAR data by copying the gradients from elsewhere, we

could correct sampling inconsistencies in LiDAR scans introduced in places where the

laser is nearly parallel to scene surfaces or passes through spotty occlusion like foliage.

By redistributing the depth gradient values in particular regions of the scan, we might

be able to resample the 3D geometry using the same technique presented here.
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(a) (b)

(c) (d)

Figure 6.21: A data set for which we do not expect a good result. There is no infor-
mation to guide the algorithm to fill the corner that results from the intersect of the
two walls and the ground. (a) An image of the LiDAR scan.(b) The region to inpaint.
(c) The holes appear to be filled correctly when hidden by the objects. (d) Visible
artifacts are present in the resulting scene, including a warped corner and wall.



CHAPTER 7

Post-Candidacy Work

Throughout the work on LiDAR inpainting in our research thus far, we have used a

greedy, patch-based method to fill holes in images. While some global methods (no-

tably [96]) have been proposed, they are currently much too slow in practice. A major

disadvantage of the greedy method is that if a single bad patch is completed, the en-

tire remaining inpainting result is often rendered unacceptable. In our experiments,

we have seen that even a single bad patch can severely corrupt the result of a greedy

image completion algorithm, as shown in Figure 7.1. In this example, we see that a

patch of grass was incorrectly copied into the brick wall. The algorithm carries on fill-

ing patches, but it now believes that grass actually belongs in this region, so many more

errors necessarily occur.

(a) (b)

Figure 7.1: An example of the result of a bad patch being copied. (a) In the blue circle,
we see that a patch has been copied that does not continue the color and texture of
the image into the hole properly. (b) The final result of the inpainting. This single
incorrect patch causes a severe visual artifact.

In many cases, the human visual system is capable of viewing the completed

image and not noticing that anything is “too wrong.” Even in Figure 7.1, at first glance

the image does not seem severely distorted. However, when applying these inpainting

techniques to inpaint 3D structure (as we have done in Chapter 6), it is much more

important to obtain a result that not only is artifact-free, but actually approximates a

sensible result in the hole. Because of this, it is extremely important to never allow a

143



144

bad patch to be copied.

During our study of the existing literature of inpainting techniques, we have no-

ticed that researchers alway trust that the patch found during their search step of the

algorithm is correct. In every algorithm we have encountered, at the end of the patch

matching process the “best” patch according to the search metric is automatically

used to inpaint the image. We propose a direction for post-candidacy work to develop

a search-method independent check of whether the patch that was found to be the

“best” is actually a good candidate. This concept is very similar to the idea of our work

in Chapter 4.

In this work, our goal is to detect when a bad patch is about to be copied, and take

action to prevent this from happening. In this chapter we propose initial ideas for de-

tecting bad matches, as well as explore possibilities for handling these errors when they

occur. In initial experiments, even with a very small number (5-10 out of hundreds) of

bad patch preventions, a dramatic increase in the quality of the final inpainted images

was observed.

7.1 Patch Acceptance Criteria

We have developed several patch acceptance criteria, and intend to perform ex-

periments to determine which are the most useful. We motivate this problem in Figure

7.2. We see that after a single incorrect patch is copied, the greedy nature of the al-

gorithm propagates the error throughout the remainder of the inpainting, making the

result unacceptable.

In Figure 7.3, we show a close-up of the target patch and the best matching

source patch (according to the sum-of-squared differences metric in the correspond-

ing valid regions). To a human, it is clear that these patches are obviously not good

matches. We see that grass pixels will be copied into the hole where brick pixels should

have been copied. Additionally, by inspecting the image it seems that we can find a

large set of patches that would result in much better completions. However, due to the

very high texture in these regions, the simple SSD metric is not able to differentiate this

bad match from the better matches appropriately.

We have manually extracted a source patch that would lead to a much more ac-
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(a) (b)

Figure 7.2: An example of patch that matches very poorly, but still ranks the best.
(a) After several iterations of inpainting, we have arrived at this situation. The target
patch is outlined in blue, and the best source patch is outlined in green. (b) The
result of filling the target patch with this incorrect source patch.

(a) (b)

Figure 7.3: A close up of the incorrect matching patches. (a) The target patch from
Figure 7.2 (red = hole). (b) The source patch from Figure 7.2. These patches have a
SSD score of 7101.1.

ceptable completion, shown in Figure 7.4.

Besides statistical fluctuations (texture) leading to bad matches according to the

SSD metric, there is a more systematic failure. Namely, of a very smooth patch is

present and contains pixels whose mean are similar to a patch, the problem we de-

scribed above happens very easily.

Consider the patches shown in Figure 7.5.

In Figure 7.6 we show close-ups of the patches from Figure 7.5 that would lead to
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(a) (b)

Figure 7.4: A better source patch. (a) The same target patch from Figure 7.2 (red =
hole). (b) A manually selected source patch which leads to a much more acceptable
completion. The SSD between these patches is 8710.0, higher than that of the best,
but incorrect, patch pair.

(a) (b)

Figure 7.5: A demonstration of an incorrect match involving a smooth patch. (a)
The target patch (blue) and best matching source patch according to the SSD metric
(bright green) are shown. The SSD score was 2964.57. (b) A much better choice of
source patch is shown in bright green. The SSD score in this case was 5464.61, much
higher than in (a).

a much more acceptable completion.

This phenomenon can be explained theoretically by the following. Consider two

independent, normally distributed random variables X = N
(
µx ,σ2

x

)
and Y = N

(
µy ,σ2

y

)
.

The difference of these variables, X −Y is distributed as Z = N
(
µx −µy ,σ2

x +σ2
y

)
. That

is, the variance of the resulting variable is the sum of the variances of the original vari-
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(a) (b) (c)

Figure 7.6: A close up of a very bad visual match that has a low SSD. (a) The target
patch from Figure 7.5 (red = hole). (b) The best patch according to the SSD metric
(a score of 2964.57) 7.6c A manually selected source patch, which is visually much
more acceptable. The SSD between this patch and the target patch is 5464.61.

ables. Now consider three image patches, A, B , and C . A and B are from the same area

of an image, so they have the same texture. We can describe a pixel in this region to

have mean uT and variance σ2
T . Now if we subtract two pixels from this region, we ob-

tain an error distributed as N (0,2σ2
T ). Now consider patch C to consist of pixels all with

value c. The difference between a pixel from A and C is distributed as N
(
uT − c,σ2

T

)
.

If c is near uT , then this difference is statistically smaller (variance σ2
T versus 2σ2

T )

than the difference of two pixels from the same textured region! This surprising and

counter-intuitive result wreaks havoc on standard patch comparison functions similar

to SSD.

In our experiments during the work in this thesis, this type of issue occurs often

enough that standard greedy patch-based inpainting is highly prone to failure. How-

ever, we have noticed that a bad match only happens with a very small number of

target patches (5 - 10) on large holes (200-300 target patches) in highly textured im-

ages. In post-candidacy work, we will address this problem by introducing methods to

prevent this behavior.

We note that this phenomenon was previously observed in [79]. The authors

mention in passing that the variance difference in the patches can be used to aid this

problem, but do not prescribe a way to build this idea into the patch matching cost

function. Our experiments thus far have shown that performing computations more
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intensive than a SSD calculation at every source patch is too computationally expen-

sive, which has motivated our idea of using acceptance criteria only on the several best

matches, which we detail in the next section.

As we noted in the previous section, direct pixel-wise comparisons of patches are

very unreliable estimates of the similarity of two patches. Unfortunately, more descrip-

tive metrics are significantly more computationally intensive, and therefore cannot be

computed at every source patch. Our main question is, once a small subset of promis-

ing patches has been identified using a fast comparison algorithm (such as SSD), can

we construct a more complex algorithm that best predicts which of these patches is

likely to produce the best completion?

In this section, we propose a modified patch search technique. First, we searches

for a small set of candidate source patches using the standard SSD metric. These top

patches are then strenuously evaluated using several criteria. If any of these criteria

are not met, then the user must take action to correct the bad match.

A promising direction we have identified for this strenuous comparison of patches

is to compare the histograms of the target patch and candidate source patches. Con-

sider the histograms in Figure 7.7. Figure 7.7a, the target patch histogram from our

previous example, is quite dissimilar from Figure 7.7b, the best patch according to SSD

score. However, Figure 7.7c, the histogram of the patch selected by the user, is a much

better match.

In the smooth patch example, the histograms also prove very discriminative, as

shown in Figure 7.8.

While directly searching for source patches using the histograms is much too

slow, it is also not descriptive enough on its own, as all spatial information within the

patch is discarded. That is, a patch that is black on the left and white on the right has

exactly the same histogram as a patch that is white on the left and black on the right.

However, since our first step, the SSD comparison, did use this spatial information, the

histogram is now a good way to differentiate bad matches from good matches. Many

techniques to compare histograms have been proposed, such as a direct bin-to-bin

comparison, the EarthMovers distance [131] , the histogram intersection score [147],

and the diffusion distance [108]. We will investigate how those and other metrics help
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(a) (b) (c)

(d) (e) (f)

Figure 7.7: Histograms of the target, best source, and manually selected source
patches. (a) The histogram of the valid region of the target patch from Figure 7.7b.
(c) The histogram of the valid region of the best source patch according to the SSD
metric. (c) The histogram of the valid region of the a better patch selected manually.

us to identify a bad match.

As further enhancement, rather than naively collect pixels into uniform histogram

bins, we can use color quantization quantization techniques to make “smarter” his-

tograms which can then also be compared in the proposed regions. This could be done

by using image clustering and smoothing algorithms such as [76, 157].
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(a) (b) (c)

(d) (e) (f)

Figure 7.8: Histograms of the target, best source, and manually selected source
patches in the smooth patch example. (d) The histogram of the valid region of the
target patch from Figure 7.8. (e) The histogram of the valid region of the best source
patch according to the SSD metric. (f ) The histogram of the valid region of the a
better patch selected manually.

7.2 Handling Detected Bad Patches

If it is not, the user should somehow choose a better patch. We detail proposed

techniques for both identifying bad patches as well as different methods of override

patch selection by the user in the remainder of this chapter. It is our opinion that a

user would much rather have a non-fully-automatic algorithm that completes images

successfully a larger portion of the time than a fully-automatic algorithm that some-

times fails and does not provide any recourse. In fact, in many real-world situations

where professional artists and editors are using software to solve problems such as this

(as described in [127]), they strongly prefer to have significant control of the result,

rather than use a “black-box” algorithm.

Our goal is to alert the user of possible bad patch matches. Therefore, we can

apply several acceptance tests simultaneously. We then perform a boolean AND oper-

ation on all of acceptance tests so that if any one of them fails, it is interpreted as an
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indication that something could be wrong.

The acceptance test framework also allows us to handle special cases. For exam-

ple, if the hole is very small (for example, covers less than 10% of the patch region), then

it should be accepted automatically, because any statistical comparison will be much

too sensitive when only a few pixels are involved. This situation frequently occurs near

the end of an inpainting operation.

When the any of our acceptance tests fail, we take action. We are developing an

interface to allow the user to do several things. First, the best source patch that had

been selected is presented to the user, along with the tentative result of the patch in-

painting, so they can visually determine if it is indeed a bad selection. If it is not (the

acceptance tests produced a false negative), then the user can simply indicate that this

patch is ok and allow the algorithm to proceed. If the patch is not visually accept-

able, the user is then presented with several hundred of the top patches which can be

quickly scanned to find an acceptable patch. Along with this work, we will investigate

clustering the top several patches, so that the user can interactively narrow down the

search to finding a good patch. In our experiments, there are generally hundreds of

similarly bad patches grouped together (with similar SSD scores), and these repeated

bad patches only serve as clutter. Finally, if a good patch is still not able to be located,

the user can manually position a patch over any part of the source region to manually

select which patch should be copied. This allows for a reasonable completion even in

extremely hard data sets that would typically fail outright. Additionally, this process

could be automated by identifying many, rather than just one, potential target patches

at each iteration. Then, we fill the first one that passes all of our acceptance criteria.

The resulting situation is shown in Figure 7.9.

If none of these candidate target patches has an acceptable match according to

our criteria, we then ask the user to select a patch identically as before. Effectively,

this allows us to defer filling difficult target patches until later in the algorithm. By

filling these difficult patches only when no “easy” patches remain, we have reduced

the number of iterations that the algorithm is allowed to propagate an error, greatly

improving the inpainting result.
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Figure 7.9: An sketch of inspecting multiple candidate target patches simultane-
ously.
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